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Abstract

Background: Glass and rubbery transitions under cooling and heating of polymeric materials underlie a shape
memory effect, that is a material ability to save temporarily the deformed shape and restore the original one under
the external influence. The present work aims to model the shape memory effect for an axially compressed polymeric
rod in its post-buckled equilibrium state, which is the generalization of Euler’s elastica for a glassy material case.

Methods: For modeling, we use a new type of constitutive relations describing the thermomechanical behavior of
amorphous polymers over a wide temperature range. To define the model parameters for lightly-linked epoxy resin a
series of experiments was conducted using the Dynamic Mechanical Analyzer.

Results: Post-buckled states of an epoxy rod equilibrium during the temperature change have been found from
numerical simulation. The obtained results illustrate the shape memory effect in case of axially compressed rod buckling.

Conclusion: The thermomechanical shape-memory cycle includes the stages of deformation development and
preservation and the subsequent recovery of the initial shape. According to the obtained results, maximum deflection
corresponds to the first loading step at the rubbery material state, because the elastic modulus is very low. During cooling
under a constant load the deformation remains constant. After unloading in glassy state the deflection decreases by a
small value, because the glassy elastic modulus significantly exceeds the rubbery one. During subsequent heating the rod
recovers its initial undeformed shape.

Keywords: Glass and rubbery transition, Thermomechanics, Post-buckled equilibrium state, Axial compression, Euler’s
elastica, Shape memory polymer, Epoxy resin

Background
Due to a high-molecular structure polymeric materials
are very temperature-dependent in their mechanical
properties. Glass and rubbery transitions under cooling
and heating are a good illustration of such dependence.
Mechanical effects occurring during glass transition, par-
ticularly for epoxy resins, are well-investigated (Liu et al.
2004, Michels et al. 2015, Shardakov et al. 1991). A large
number of studies have reported on modeling these
effects for the case of small deformations. Two
formal groups could be derived from the studies:
the models of instantaneous elastic relaxation

or phase transition (Bartenev and Barteneva 1992,
Bugakov 1989, Klychnikov et al. 1980) and the models
based on the postulates of the non-isothermal viscous
elasticity (Bolotin 1972, Il’ushin and Pobedria 1970,
Moskvitin 1972). The approach used in the present
study (Matveenko et al. 2012) occupies an intermediate
position between these two.
Glass transition of amorphous polymers underlies a

shape memory effect, that is a material ability to save
temporarily the deformed shape and restore the original
one under the external influence, e.g. heat. Shape mem-
ory polymers (SMP) are capable of very large recover-
able strains. Such materials have been used extensively
in medicine (Yakacki and Gall 2010, Yakacki et al. 2007,
Sharifi et al. 2013), microelectronics and some other in-
dustrial fields (Hager et al. 2015).
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Present work aims to model the shape memory effect
for an axially compressed polymeric rod in its post-
buckled equilibrium state. The problem of post-buckled
behavior of axially compressed rods is well-documented
in literature (Krylov 1931, Vol’mir 1967, Rabotnov 1988).
Our study generalizes the existing analytical solutions
for the case of an SMP rod thermomechanical loading.

Methods
Constitutive equations for glassy material
Glass transition is accompanied by changes of mechan-
ical properties in transition through the region with Tg1

and Tg2 temperature bounds, which is connected with
the molecular mobility restriction. The material comes
to its glassy state at temperatures below Tg1 and to rub-
bery state at temperatures above Tg2.
To derive the constitutive equations we use the follow-

ing simplifying hypotheses (Matveenko et al. 2012):

1) the characteristic times of the external actions are
much shorter than the relaxation times in the glassy
state (T < Tg1, Fig. 1), so the loading process occurs
more rapidly than the relaxation process;

2) the characteristic times of the external actions
essentially exceed the limits of the relaxation
spectrum of a highly elastic polymer (T > Tg2, Fig. 1),
so all the relaxation processes finish during the
loading.

With these hypotheses, beyond the limits of the glass
transition interval the examined material can be consid-
ered as an elastic medium, but with different elastic
moduli: E1 —the Young’s modulus for the material in
the rubbery state, E1 + E2 —in the glassy state (E2 is the
difference between the glassy and rubbery moduli, for
many polymeric materials E1 < < E2). We assume that
the polymer behavior within the glass transition interval

at a decreasing temperature is specified by the growth of
the mechanical rigidity due to a gradual decrease in the
segmental mobility and an increase in the energy of the
intermolecular interactions.
To model such an effect we introduce the conversion

degree parameter N(T) (Fig. 1) which characterizes the
degree of restriction in the segmental mobility of the
polymer and changes from 0 (T > Tg2) to 1 (T < Tg1).
The hypotheses introduced above allow us to con-

struct the constitutive relations capable of describing the
behavior of SMPs over a wide range of temperatures in-
cluding the transition region (Matveenko et al. 2012). In
case of small strains for the uniaxial stress state they
could be defined in the following way:

σ tð Þ ¼ E1 ε tð Þ−εT tð Þð Þ

þE2

Z t

0

ε tð Þ−ε� τð Þð ÞdN τð Þ−E2

Z t

0

εT tð Þ−εT � τð Þð ÞdN τð Þ;

ð1Þ

where σ is the axial stress, t —the current time, ɛ and
ɛT—the full and temperature strains, ɛ* and ɛT

*—the full
and temperature strains at t = τ*; τ* is the corresponding
time under the cooling conditions when N(τ*) =N(τ).
The values of ɛ* and ɛT

* are stored or frozen at the stage
of vitrification and remain unchanged during the inverse
transition from the glassy to rubbery state. During cool-
ing the increase of N(T) and the concurrent rigidity in-
crease within the transition region correspond to the
growth of intermolecular interaction bonds. We assume
every newly formed bond to deform concurrently with
the rest of the material, which is reflected in the differ-
ence form of the integrands in (1). Thus, the physical re-
lations (1) imply that the temperature-deformation
history should be reckoned from the temperature
Th (higher than Tg2), at which the polymer is in the equi-
librium rubbery state.
Constitutive equations (1) enable us to describe the

developing residual stresses and frozen strains under
cooling and, correspondingly, the shape memory ef-
fect. Physically, the initiation of frozen strains is
concerned with the rapidly developing relaxation pro-
cesses under loading in the rubbery state (according
to the hypothesis 2), which result in deformations
corresponding to the elastic modulus E1. After the
vitrification due to cooling and subsequent unloading,
only a small part of the total strain corresponding to
the elastic modulus E1 + E2 recovers. The other, bigger
part of the total strain remains frozen, since the char-
acteristic relaxation times in the glassy state signifi-
cantly exceed the limits required for the total strain
recovery (hypothesis 1).

Fig. 1 Temperature-dependent conversion degree parameter N(T).
I—glassy region, II—transition region, III—rubbery region
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Numerical modeling
In this section, we specify some numerical aspects of the
model based on the constitutive equations (1). The La-
place distribution is used to describe the conversion de-
gree parameter N(T) (Matveenko et al. 2012, Bronshtein
and Semendjaiev 1986):

N ¼
1−0; 5 exp

T−Tg

γL

0
@

1
A; T < Tg

0; 5 exp −
T−Tg

γL

0
@

1
A; T≥Tg

8>>>>>><
>>>>>>:

ð2Þ

where γL is the width-like parameter for the transition
region, and Tg is the parameter specifying the transition
temperature.
The temperature strain included in (1) could be

expressed as

εT ¼ αΔT : ð3Þ
Here ΔT is the temperature variation; and α —the lin-

ear temperature expansion coefficient (LTEC) defined as

α ¼ α1;T > Tgα;
α2;T≤Tgα;

�
ð4Þ

where Tgα is the mean temperature of the transition
region, α1 and α2 —the LTEC for the rubbery and glassy
material states respectively.
Thus, the numerical model defined through the rela-

tions (1)–(4) includes seven independent parameters:
E1, E2, α1, α2, γL,Tg and Tgα.

Experiments
The material considered in this work is the lightly-linked
epoxy resin of special composition. In order to identify
the material parameters included into the relations
(1)–(4) a series of experiments was conducted using a
Dynamic Mechanical Analyzer DMA Q800 V20.24 Build
43. Cylindrical specimens were 5.8 mm in diameter and
7.8 mm tall. The specimens were heated under a heat
rate 1.25°С/min and a constant compression load
0.25 N. The results obtained are shown in Fig. 2.
It has been established from the experimental data

that the variation of the heat rate results in the thermo-
mechanical curve shifting along the temperature axis. In
this work we do not consider the heat rate influence on
the thermomechanical material behavior and take the
rate value as a constant.
A simple compression test at room temperature under

the small strain level has also been conducted, and the
value of glassy elastic modulus E1 + E2 = 0, 77 GPa was
obtained.

Identification of model parameters
Based on the experimental data obtained in the previous
section, the parameters of the numerical model were
defined.
The value of Tgα related to the inflection point of the

thermomechanical curve in the middle of the transition
region is taken 80°С. The glass transition bounds were
taken as Tg1 = 55 ˚С and Tg2 = 105 ˚С according to the
shape of the thermomechanical curve (Fig. 2).
The parameters E1, α1, α2, γL and Tg were defined from

the better concordance between the experimental and

Fig. 2 Thermomechanical curve of epoxy specimen: experimental and numerical results
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numerical results by minimizing the functional discrep-
ancy. It was established numerically that the variation
of γL and Tg does not affect the thermomechanical
curve beyond the transition region. Therefore, the
minimization parameters in this case were α1, α2 and E1
with the normalizing factors 105, 105 and 10−4 respect-
ively. The experimental and numerical deformation
values were linearly interpolated to the temperature
grid nodes with the 1°С increment. Then the value of
functional discrepancy for temperatures beyond the
transition region was calculated as a mean square dis-
crepancy between the experimental and numerical data:

ψ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Δεi
2

n

vuuut
; ð5Þ

where n is the node number and Δεi —the difference
between the experimental and theoretical deformation
values in the i node. For the functional minimization we
use the quasi-Newton method of linear search. The iter-
ation process stops when the current increment of the
minimization parameter becomes less than 10−6.
When the values of α1, α2 and E1 are defined, we find

Tg and γL by minimizing the functional discrepancy (5)
within the transition temperature region. We use the
same quasi-Newton method; for the parameter Tg the
normalizing factor 0.1 was introduced.
From the functional minimization the following

values of the model parameters were found: α1 =
15.77 * 10−5, α2 = 1.69 * 10−5, E1 = 296.76 kPa, Tg =
36.62 ˚ С, and γL = 6.17 ˚ С, which correspond to the
mean square discrepancy of 7.17*10−4. The resultant
approximation of experimental data with the numerical
model is shown in Fig. 2.

Bending of axially compressed polymeric rod under
temperature change. Problem formulation
In this section, the thermomechanical behavior of a rod
with the spherical joint bonds on the boundaries is dis-
cussed. The rod is axially compressed with the force P
that exceeds the critical one, which leads to buckling
and subsequent bending (Fig. 3).
The loading path is the following (Fig. 4):

1) Loading with the force P at an initial temperature
greater than Tg2(N = 0);

2) Cooling under a constant load to a temperature less
than Tg1;

3) Unloading (N = 1); and
4) Heating to the initial temperature.

For a bended beam, the following expression is suit-
able (Rabotnov 1988):

χ ¼ M
EI

;

where M = Py is the bending moment, y —the trans-
verse coordinate (Fig. 3), I —the second moment of area,
χ —the curvature. Then the constitutive equations (1)
could be written as

Р tð Þ⋅y t; sð Þ
I

¼ E1χ t; sð Þ

þ E2

Z t

0

χ t; sð Þ−χ� τ; sð Þð ÞdN Т τð Þð Þ; ð6Þ

where s is the curvilinear axial coordinate with the
zero point lying on the rod boundary, χ* —the curvature
at t = τ*; τ* is the same as in (1). Here we do not consider
the temperature expansion.
Thus, the mathematical statement of the problem in-

cludes the following relations:

� Constitutive equations (6);

Fig. 3 Schematic representation of the compressed rod
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� Geometrical relations:

χ ¼ ∂Θ
∂s

; ð7Þ

where Θ is the slope of the tangent line to the rod axis
(Fig. 3); and

� Boundary conditions:

– zero boundary curvature: ∂Θ∂s js¼0 ¼ 0;
– a symmetry condition: Θ|s = l/2 = 0.

Initially, the rod was in the rubbery material state,
unloaded and undeformed: P = 0, χ = 0,N = 0. At the first
stage of the loading path (Fig. 4), the rod was loaded at a

constant temperature. Considering that ∂y
∂s ¼ sinΘ; the

mathematical statement for this stage could be rewritten
in the second-order differential form for the variable
Θ(s) with boundary conditions:

∂2Θ
∂s2

¼ −
P
E1I

sin Θ

∂Θ
∂s

j
s¼0

¼ 0

Θj
s¼l=2

¼ 0

:

8>>>>>>>>><
>>>>>>>>>:

ð8Þ

In (Rabotnov 1988) the analytical solution of the
Euler’s elastica system (8) is given. The following equiva-
lent variables are introduced:

sin
Θ

2
¼ m⋅ sinϕ; ð9Þ

where m ¼ sin Θ0
2 ; Θ0 =Θ|s = 0, and ϕ changes from 0

(s = l/2) to π/2(s = 0). As a result, (8) is transformed to:

s ¼
ffiffiffiffiffiffiffi
E1I
P

r
⋅ F−F ϕð Þð Þ; ð10Þ

where F ¼
Zπ=2

0

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−m2 sin2ϕ

p and F ϕð Þ ¼

Zϕ

0

dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−m2 sin2ϕ

p are the first type elliptic integrals. Upon

substituting the boundary condition ϕ|s=l/2 = 0 into (10)

we obtain F ¼
ffiffiffiffiffi
P
E1I

q
⋅ l2 ; from which the value m for every

particular load P could be unambiguously found. Then
we can straightforwardly move from the relations Θ(ϕ)
(9) and s(ϕ) (10) to the relation Θ(s), and find the curva-
ture χ1(s) for the first loading stage from the geometrical
equations (7).
During the loading stage 2 the load remains un-

changed. According to the accepted hypotheses, every
additional bond formed during vitrification is un-
deformed at its initiation moment, and so it does not
affect the stress-strain state of the construction at that
moment (Matveenko et al. 2012). Therefore, the curva-
ture during cooling under a constant load remains un-
changed: χ2(s) = χ1(s).

cooling (2) 

lo
ad

in
g 

(1
) 

un
lo

ad
in

g
(3

)

heating (4) 

Fig. 4 A loading path
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Taking into consideration the absence of load at stages
3 and 4 and constancy of the curvature χ* frozen during
stage 2, the relations (6) could be rewritten as

0 ¼ E1 þ E2N tð Þð Þχ t; sð Þ−χ2 t; sð ÞE2

Z t

0

dN Т τð Þð Þ:

ð11Þ

Thus, at stage 3, after unloading, with N = 1 the
curvature is χ3 t; sð Þ ¼ E2

E1þE2
χ2 t; sð Þ: The value E2

E1þE2
< 1;

which corresponds to the curvature decrease after
unloading.
During heating of the unloaded rod (stage 4) its curva-

ture is defined as χ4 t; sð Þ ¼ E2N T tð Þð Þ
E1þE2N T tð Þð Þ χ2 t; sð Þ; which fol-

lows from (11). At the final temperature, the conversion
degree parameter N = 0, therefore χ = 0, i.e. the rod is
fully straightened.

Results and discussion
In this section, we specify the problem formulated in the
previous section for the 50 mm epoxy resin rod with a
circular cross-section of 5 mm diameter. The material
characteristics were found from the experiments de-
scribed above.
It has been established from compressing tests for the

rubbery material under different loads that for the defor-
mations to be fully recoverable the stress should be less
than 58 kPa. During bending of an axially compressed
rod of the considered shape the respective load is
0.0435 N, which exceeds the critical one (Rabotnov
1988) 1.21 times. This value was taken as a compressing
load P for our numerical simulations. The obtained re-
sults are demonstrated in Figs. 5 and 6.
As one can see in Figs. 5 and 6, maximum deflection

corresponds to the first loading step at the rubbery ma-
terial state, because the elastic modulus is very low at
this temperature. The road being linear under a load less
than the critical one causes the break of the curve (Fig. 6,
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Fig. 5 Deformed rod shapes during different loading stages

Fig. 6 Maximum deflection as a function of load and temperature during different loading stages
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stage 1). The increase in load leads to buckling and a
further nonlinear increase in deflection.
At the second stage—cooling under a constant

load—the deformation remains constant. Here, accord-
ing to the accepted hypotheses, the additional bond for-
mation occurs, and every new bond is undeformed at its
initiation moment. Therefore, the rigidity increase does
not lead to additional strains and stresses.
At the third stage, after unloading the deflection de-

creases by a small value of about 0.8 % compared to the
one at the first stage, because the elastic modulus at
this temperature significantly exceeds the initial one.
During subsequent heating (stage 4) the rod progres-
sively straightens because of the molecular mobility
growth, and the deformations frozen at stage 2 release.

Conclusions
In this research, we have studied the thermomechanical
behavior of an axially compressed epoxy rod in its post-
buckled equilibrium state. The thermomechanical
shape-memory cycle has been modeled, which includes
the stages of deformation development and preservation
and the subsequent recovery of the initial shape. The
material parameters included in constitutive equations
were found from thermomechanical experiments. As a
result, the deformed shapes of the rod in its post-
buckled equilibrium state under changing temperature
conditions have been obtained, and the shape memory
effect has been illustrated.
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