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Abstract

Background: Understanding of viscoelastic behaviour of a periodontal membrane under physiological conditions is
important for many orthodontic problems. A new analytic model of a nearly incompressible viscoelastic periodontal
ligament is suggested, employing symmetrical paraboloids to describe its internal and external surfaces.

Methods: In the model, a tooth root is assumed to be a rigid body, with perfect bonding between its external surface
and an internal surface of the ligament. An assumption of almost incompressible material is used to formulate
kinematic relationships for a periodontal ligament; a viscoelastic constitutive equation with a fractional exponential
kernel is suggested for its description.

Results: Translational and rotational equations of motion are derived for ligament’s points and special cases of
translational displacements of the tooth root are analysed. Material parameters of the fractional viscoelastic function
are assessed on the basis of experimental data for response of the periodontal ligament to tooth translation. A
character of distribution of hydrostatic stresses in the ligament caused by vertical and horizontal translations of the
tooth root is defined.

Conclusions: The proposed model allows generalization of the known analytical models of the viscoelastic
periodontal ligament by introduction of instantaneous and relaxed elastic moduli, as well as the fractional parameter.
The latter makes it possible to take into account different behaviours of the periodontal tissue under short- and
long-term loads. The obtained results can be used to determine loads required for orthodontic tooth movements
corresponding to optimal stresses, as well as to simulate bone remodelling on the basis of changes in stresses and
strains in the periodontal ligament caused by such movements.

Keywords: Periodontal ligament, Tooth root, Viscoelastic model, Fractional exponential function, Translational
displacement

Background
A root of a tooth is attached to an alveolar bone by
a periodontal ligament (PDL), a soft connective tissue
consisting of collagen fibres and amatrix phase with nerve
endings and blood vessels (Bergomi et al. 2011; Berkovitz
et al. 1995; Chatterjee 2006; Chiba 2004; Fill et al. 2011;
Nanci and Ten Cate AR 2008; Natali 2003; Nishihira
et al. 2003). In addition to providing interconnection for a
tooth with its supporting structures, the PDL responds to
applied loads, demonstrating viscoelastic time-dependent
properties (Burstone et al. 1978; Jonsdottir et al. 2006;
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Komatsu 2010; Komatsu et al. 2007; Middleton et al. 1996;
Picton 1990; Qian et al. 2009; Ross et al. 1976; Toms and
Eberhardt 2003).
Depending on duration of the applied load, ini-

tial and orthodontic tooth motions are distinguished
(Dorow et al. 2003; Frost 1992; Kawarizadeh et al. 2003;
Middleton et al. 1996). The former occurs under a short-
term load, with the tooth returning to its original posi-
tion after load removal (Muhlemann and Zander 1954;
Tanne et al. 1991; Ziegler et al. 2005), accompanied by a
rearrangement of bone tissue. Thus, the PDL plays an
important role in ensuring a proper reaction of bone.
Analysis of biological mechanisms underpinning tooth
movements (Davidovitch and Shanfeld 1975; Proffit et al.
1993; Reitan and Rygh 1994) showed that stresses and
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strains in the PDL, caused by external forces, were a key
driver of bone reconstruction. Stretching and compres-
sion the PDL tissue lead to resorption and bone formation,
respectively (Bourauel et al. 2000; Davidovitch et al. 1980;
Masella and Meister 2006; Melsen 2001; Roberts and
Chase 1981; Storey 1973; Wise and King 2008).
Short- and long-term (orthodontic) teeth motions can

be modelled employing a linear elastic, bilinear elas-
tic, viscoelastic, hyperelastic, or multiphase formulation
for the PDL Bergomi et al. 2011; Cattaneo et al. 2005;
Ferrari et al. 2008; Fill et al. 2012; Kawarizadeh et al.
2003; Middleton et al. 1996; Muraki et al. 2004; Natali
et al. 2002; Natali et al. 2011; Provatidis 2000, Qian et al.
2009). The same type of continuous models are used to
calculate stress-strain states of the PDL for various load
types, as implemented in different finite-element stud-
ies (Cattaneo et al. 2005; Clement et al. 2004; Dorow
and Sander 2005; Ferrari et al. 2008; Hohmann et al.
2011; Jeon et al. 1999; Jones et al. 2001; Kawarizadeh
et al. 2003; Muraki et al. 2004; Natali et al. 2004; Pietrzak
et al. 2002, Provatidis 2000; Qian et al. 2009; Reimann et al.
2009; Toms and Eberhardt 2003; Vollmer et al. 1999,
Ziegler et al. 2005). Because of their complexity, analyti-
cal modelling of elastic and viscoelastic responses of PDLs
to loads applied to the tooth was carried out in a rela-
tively small number of studies (Kusy and Tulloch 1986;
Natali et al. 2007; Nikolai 1996; Pena et al. 2007, 2008a,b;
Provatidis 2001; Slomka et al. 2008; Smith and Burstone
1984; Van Schepdael et al. 2013). Most important results
for 3-D cases were obtained using circular and elliptic-
paraboloid shapes for the tooth root and PDL surfaces
(Haack and Haft 1972; Provatidis 2001; Van Schepdael
et al. 2013). In addition, results of a study by Bourauel
et al. (2000) demonstrated that approximation of the
actual geometry of the tooth with a paraboloid having
an elliptical cross-section allowsmodelling the short-term
and orthodontic tooth movements with high accuracy. In
studies of Provatidis (2001), Van Schepdael et al. (2013),
models a tooth root and a PDL in the form of a paraboloid
were used to identify the magnitudes of initial displace-
ments under static loads, stress-strain states of the PDL,
a position of the centre of resistance of the tooth, as well
as the effect of eccentricity of a cross section at initial
displacements. An important feature of the used analyti-
cal model was an approximation of the PDL as an almost
incompressible material with a Poisson’s ratio equal to
0.4–0.49 (Rees and Jacobsen 1997). In this case, it can
be assumed that maximum deformation of the PDL tis-
sue along a normal to the tooth-root surface coincides
with thickness of the PDL in the same direction. Finite-
element studies of the PDL’s stress-strain state under
instantaneous loads (corresponding to small displace-
ments of the tooth root) indicated high accuracy of the
analytical model. A further development of the analytical

scheme for the almost incompressible PDL proposed by
Provatidis (2001) can be implemented for long-term and
heavy loads, taking into account time-dependent and vis-
coelastic properties of the PDL.
The aim of our study is to develop an analytical model

of a viscoelastic PDL with a fractional exponential ker-
nel to describe evolution of deformation in a periodon-
tal tissue and evaluate tooth-root movements with time.
Viscoelastic behaviour of the periodontal ligament is in
agreement with the widely employed Nutting law (Koeller
1984; 2010; Mainardi 2010; Uchaikin 2013) that can be
simply presented in the form of the dependence of the
shear stress using of strain and time. Such a relationship
is suitable when the material properties are determined
by various states between an elastic body and a viscous
fluid.

Methods
Geometrical form of tooth root and PDL
In the suggested approach, an external surface of a tooth
root (supposed to be a rigid body) and an adjacent inner
surface of the PDL are modelled with a paraboloid (Van
Schepdael et al. 2013)

F(x, y, z) = y
h

− 1
b2

(
(1 − e2)x2 + z2

) = 0, (1)

where h is the height of the tooth root; e = √
1 − (b/a)2 is

the eccentricity of the elliptical cross-section of the tooth
in the alveolar crest; a and b are the semi-axes of this
ellipse.
The internal surface of the PDL adjacent to the dental

alveolar bone is shifted along the normal to the surface of
the tooth root. Its equation is as follows:

F1(x, y, z) = y + nyδ
h

− 1
b2

(
(1 − e2)(x + nxδ)2

+ (z + nzδ)2
) = 0,

where nx, ny, and nz are the components of the unit
normal vector to the surface of the first paraboloid; δ > 0.
The components of the normal vector are determined
from (1):

nx = −2(1 − e2)hx
b2�

, ny = 1
�
, nz = − 2hz

b2�
,

� = 1
b2

√
b4 + 4h2((1 − e2)2x2 + z2).

(2)

Under a concentrated force, points of the PDL on
the tooth-root surface (1) begin to move with the root,
while the external surface of the PDL is fixed. There
is no significant difference between the schemes con-
sidering fixing of the outer surface of the PDL to the
alveolar bone or its full constraint. Hence, to calculate
the initial movement of the teeth in the PDL, both the
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teeth and the alveolar bone could be considered as solids
(Hohmann et al. 2011).

Expressions for strains and displacements
Following Kawarizadeh et al. (2003), Rees and Jacobsen
(1997), it is supposed that the PDL has a Poisson’s
ratio equal to 0.49, i.e. effectively incompressible. This
means that it should exhibit a fluid-like behaviour, flow-
ing around the surface of the root of the tooth when
the latter is displaced to the wall of the dental alveolar
bone (Kawarizadeh et al. 2003). Hence, strains and rela-
tive shears associated with a normal vector, a generatrix
of, and a tangent to, the external surface of the tooth root
could be represented in the coordinate system as follows
(Provatidis 2001; Van Schepdael et al. 2013):

εnn = −un
δ
, εtt = εθθ = 0, γnθ = −uθ

δ
, γnt = −ut

δ
, γtθ = 0,

(3)

where un, uθ and ut are displacements of the PDL points,
with subscripts n, θ and t, denoting the normal, tan-
gential directions with regard to the root surface, and
the generatrix of it, and δ being the thickness of the
PDL in the normal direction. The normal vector �n, tan-
gential �θ to the root surface of the tooth and genera-
trix �t, as well as its geometrical dimensions are shown
in Fig. 1.
Any displacements of the rigid tooth root can be pre-

sented as a combination of translational displacements
u0x, u0y, u0z and angles of rotation θx, θy, θz with regard
to the axes of coordinates. Since the thickness of PDL
is small, the rotation angles are small, too. Hence, the
following linearized expressions can be used:

ux = u0x + zθy − yθz,uy = u0y − zθx + xθz,
uz = u0z + yθx − xθy.

(4)

After transformation in accordance with Van Schepdael
et al. (2013), the relationships between the displacements
ux, uy and uz of the tooth root and strains in the PDL
εxx, εyy, εzz, γxy, γyz and γxz can be obtained in Cartesian
coordinates.

Constitutive equations
An overview of specific applications of different models
of PDL is given in (Fill et al. 2012). The main drawback
of schemes presenting a PDL in simulations as a material
with a complex mechanical behaviour is a lack of accurate
quantitative data for respective mechanical parameters.
For viscoelastic models it is compensated by availability
of known magnitudes of relaxation times and elasticity
moduli (Komatsu 2010; Qian et al. 2009; Wood et al.
2011), and experimentally determined viscoelastic prop-
erties (Bergomi et al. 2011; Ferrari et al. 2008; Natali 2003;

Fig. 1 Geometrical shape of tooth root: �n is normal, �t is generatrix, �θ is
tangential to surface of tooth root in point P

Naveh et al. 2012; Toms and Eberhardt 2003; Toms et al.
2002; Yoshida et al. 2001).
Several models of viscoelastic behaviour of the PDL,

based on approaches byMaxwell, Voigt and, Kelvin-Voigt,
were proposed (Fill et al. 2012). Such material are said to
exhibit a rheological behaviour. Rheology as a branch of
science is concerned with extending continuum mechan-
ics to characterization of flow of materials, with a combi-
nation of elastic, viscous and plastic properties bymerging
elasticity and (Newtonian) fluid mechanics. In particular,
materials studied within the framework of rheology could
have a memory (so called hereditary materials). To model
this effect, a fractional calculus can be used, e.g., (Koeller
2010; Uchaikin 2013; West et al. 2003); the history of
fractional modelling in rheology is presented in (Rogosin
and Mainardi 2014) (see also (Mainardi 2010) and refer-
ences therein). A fractional viscoelastic model provides a
rather natural approach for a study of periodontal mem-
branes. In addition, fractional models (i.e. models with
fractional derivatives) are successfully used to solve dif-
ferent problems of mechanics (Rossikhin and Shitikova
2013b; Rossikhin et al. 2014).
A general theory of mechanics of hereditary mate-

rials was suggested by Rabotnov (1980) using inte-
gral equations; Koeller (1984) reviewed the application
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of integral equations to viscoelasticity and introduced
fractional calculus into the Rabotnov’s theory employ-
ing a structural spring-dashpot model, used to gen-
eralize the classical mechanical models. Rossikhin and
Shitikova (2015) summarized the Rabotnov’s theory (see
also (Rossikhin and Shitikova 2014)). The Rabotnov’s frac-
tional exponential function is related to a well-known
Mittag-Leffler function (Gorenflo et al. 2014). Using this
relation, it can be shown that the Rabotnov’s theory is
equivalent to the scheme by Torvik and Bagley based on
a fractional polynomial constitutive equation. Thus, a vis-
coelastic model with a fractional exponential kernel is
highly suitable for modelling of mechanical behaviour of
biological materials with time-dependent properties. In
a viscoelastic scheme similar to the Rabotnov’s model,
components of a stress tensor can be presented in the fol-
lowing form, taking into account viscoelastic properties of
the PDL:

σij = E∞
(1−2ν)(1+ν)

⎧⎨
⎩(1−2ν)εij−νε

t∫
0

Eγ

(
− τ

τε

)
εij(t−τ)dτ+

+ν

⎛
⎝ 3∑

k=1
εkk − νε

t∫
0

Eγ

(
− τ

τε

) 3∑
k=1

εkk(t − τ)dτ

⎞
⎠

⎫⎬
⎭ ,

(5)

where τs is the relaxation time; νε = E∞−E0
E∞ , E0 and E∞

are, respectively, the instantaneous (glassy) and relaxed
(rubbery) elastic moduli (Rossikhin and Shitikova 2015);

and Eγ

(
− τ

τε

)
is the Rabotnov’s fractional exponential

function, which describes the relaxation of volume and
shear stresses. It was introduced by Rabotnov in the fol-
lowing form (Rabotnov 1948; 1980):

Eγ

(
− t

τε

)
= tγ−1

τ
γ
ε

∞∑
n=0

(−1)n
(t/τε)

γn


 [γ (n + 1)]
,

where 0 < γ < 1 is the fractional parameter. Note that
the Rabotnov’s function is a special case of the classical
Mittag-Leffler function widely used in fractional models
(see (Gorenflo et al. 2014; Mainardi 2010)).

Equations of motion
To find the translational displacements and rotation
angles in the PDL, the following conditions of the dynamic
equilibrium of the tooth root are used:∫∫

F

(�n · σ)dF + M
d2 �u0
dt2

− �f = 0,

∫∫
F

�r × (�n · σ)dF + J
d2 �θ
dt2

− �m = 0,
(6)

where �m = (mx,my,mz) is the principal moment of exter-
nal forces; �f = (

fx, fy, fz
)
is the principal vector of external

forces; �r is the radius-vector; �n = (nx, ny, nz) is the unit
normal vector to the surface (1), σ is the stress tensor;
M and J are the mass and axial moment of inertia of the
tooth root, respectively; �u0 = (u0x,u0y,u0z) is the vector
of translational displacements of the tooth root along the
axes of coordinates, and �θ = (θx, θy, θz) is the vector of
rotation angles of the tooth root with respect to the axes.
The components of the displacement vector �u0 and the
vector of rotation angles �θ are functions of time.
Taking into account relations (2) and (5) one can reduce

equations of motion (6) (after some transformations) to
the following form:

a11

⎛
⎝u0x−νε

t∫
0

Eγu0x(t−τ)dτ

⎞
⎠+ a16

⎛
⎝θz−νε

t∫
0

Eγ θz(t−τ)dτ

⎞
⎠+ M

d2u0x
dt2

= fx,

a22

⎛
⎝u0y − νε

t∫
0

Eγ u0y(t − τ)dτ

⎞
⎠ + M

d2u0y
dt2

= fy,

a33

⎛
⎝u0z−νε

t∫
0

Eγ u0z(t−τ)dτ

⎞
⎠+ a34

⎛
⎝θx−νε

t∫
0

Eγ θx(t−τ)dτ

⎞
⎠+ M

d2u0z
dt2

= fz ,

a43

⎛
⎝u0z − νε

t∫
0

Eγ u0z(t − τ)dτ

⎞
⎠ + a44

⎛
⎝θx − νε

t∫
0

Eγ θx(t − τ)dτ

⎞
⎠+

+ Jx
d2θx
dt2

= yf fz − zf fy,

a55

⎛
⎝θy − νε

t∫
0

Eγ θy(t − τ)dτ

⎞
⎠ + Jy

d2θy
dt2

= zf fx − xf fz ,

a61

⎛
⎝u0x − νε

t∫
0

Eγ u0x(t − τ)dτ

⎞
⎠ + a66

⎛
⎝θz − νε

t∫
0

Eγ θz(t − τ)dτ

⎞
⎠+

+ Jz
d2θz
dt2

= xf fy − yf fx,

Eγ ≡ Eγ

(
− τ

τε

)
,

(7)

where xf , yf and zf are the coordinates of the point where
the load is applied. The coefficients of the system (7)
are presented in Appendix. These coefficients are cal-
culated for the tooth root with geometrical dimensions
h = 13.0 mm, b = 3.9 mm and e = 0.6. Elastic prop-
erties of the PDL are assigned by constants E∞ = 680
kPa and ν = 0.49 (Tanne et al. 1991). Thickness δ of the
PDL is 0.229 mm (Provatidis 2001). In this case, a16 =
a61 = −44.168 kN and a34 = a43 = 59.060 kN. Mag-
nitudes of other coefficients of system (7) are given in
Table 1.

Table 1 Coefficients of system (7)

a11 [M N/m] a22 [M N/m] a33 [M N/m] a44 [N·m] a55 [N·m] a66 [N·m]

5.043 1.090 6.997 578.9 6.137 445.6



Bosiakov et al. Mechanics of AdvancedMaterials andModern Processes  (2015) 1:7 Page 5 of 11

The coefficients aij depend on the geometrical shape of
the tooth root, the Poisson’s ratio as well as the instan-
taneous and relaxed elastic moduli of the periodontal
tissue and are time-independent. Therefore, they could be
eliminated from the integrals in Eq. (7).

Translational displacements of tooth root
During the motion of the tooth root along the y-axis, cor-
responding to extrusion (or intrusion), the translational
displacements along the x- and z-axes, as well as the angles
of rotation vanish, i.e., u0x = u0z = 0 and θx = θy =
θz = 0; the load acts only along the y-axis. In this case, one
obtains from (7)

a22

⎛
⎝u0y − νε

t∫
0

Eγ u0y(t − τ)dτ

⎞
⎠+M

d2u0y
dt2

= fy. (8)

In the case of translational displacement of the tooth
root in a horizontal plane, in particular, along the x-axis,
u0y = u0z = 0 and θx = θy = θz = 0. The load acts along
the x-axis, and its line of action passes through the centre
of resistance of the tooth root with coordinates (0, y1, 0).
As a result, we have

a11

⎛
⎝u0x − νε

t∫
0

Eγ u0x(t − τ)dτ

⎞
⎠ + M

d2u0x
dt2

= fx,

a61

⎛
⎝u0x − νε

t∫
0

Eγ u0x(t − τ)dτ

⎞
⎠ = −y1 fx.

(9)

To obtain the system of equations describing the trans-
lational motion of the tooth root along the z-axis, it is
necessary to equalize displacements u0x and u0y and all
angles of rotation in (9) to zero. In this case, only the
z-component of the load acts on the tooth, and its line
of action passes through the centre of resistance with
coordinates (0, y2, 0).

Results
Strains in PDL during translational displacement of tooth
root
Physical parameters of the viscoelastic model can be
assessed using Eq. 8, since stiffness a22 of the PDL along
the y-axis direction is smaller than a11 and a33. Duration
of the load action on the tooth root is assumed to be large
enough (from 0 to 300 s, (Qian et al. 2009; Slomka et al.
2008)), and the mass of the tooth root small (m = 1 · 10−3

kg). Hence, the inertial term in Eq. (8) can be neglected:

u0y − νε

t∫
0

Eγ u0y(t − τ)dτ = fy
a22

. (10)

According to (Rossikhin 2010) solution of this equation
can be written as

u0y(t) = fy
a22

(
1 + νσ

tγ

τσ

∞∑
n=0

(−1)n( t
τσ

)γn


[ γ (n + 1)]

)
, (11)

where νσ = E∞−E0
E0 , τσ is the retardation time. Solution

(11) corresponds to the initial conditions u0y(t)|t=0 = fy
a22

and du0y(t)
dt

∣∣∣t=0 = d2u0y(t)
dt2

∣∣∣
t=0

= 0.
In Eq. ( 11), stiffness a22 is known (see Table 1), while

the load fy must be specified. The retardation time τσ ,
parameter νσ and fractional parameter γ are unknown.
The magnitudes of these parameters are assessed using
the models for the tooth movement with time in the vis-
coelastic PDL that were analysed in (Qian et al. 2009;
Slomka et al. 2008). The tooth displacement with time in
the viscoelastic PDLwas determined for a continuous load
that changed from 0 to 15 N (Qian et al. 2009) as well as
for a discrete change in the load magnitude from 0.5 N to
3.0 N with a step of 0.5 N (Slomka et al. 2008); the time
intervals were 300 s (Qian et al. 2009) and 1200 s (Slomka
et al. 2008). In our case, the calculation of displacements
was performed for the time interval from 0 to 300 s;
the transition phase was 20–25 s (Qian et al. 2009; Slomka
et al. 2008).
For a case of vertical loading of the tooth root, the high-

est strain in the PDL in the coordinate system (n, t, θ)

was εnn along the y-axis. Evolution of strains εnn in the
xy-plane for different points of the PDL on the surface
of the tooth root is shown in Fig. 2. The tooth crown
was loaded by a constant compressive force of – 2 N,
the fractional parameter γ was equal to 0.35; the retar-
dation time τγ and the parameter νσ were equal to 550 s
and 1.3 · 103, respectively. The values of the above param-

Fig. 2 Evolution of strain εnn in xy-plane during translational
displacement of tooth root along y-axis: 1 – x = 0, y = 0;
2 – x = b√

2(1−e2)
, y = h/2; 3 – x = b√

1−e2
, y = h
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eters were determined from the condition εnn ≤ 1
(in accordance with the first expression of relations
(3)) for PDL’s points located in the apex of the tooth
root.
In addition to strain εnn, another nonzero strain is εnt .

For the above magnitudes of load, geometric and physical
parameters of the tooth root and the PDL as well as those
of the fractional kernel, the absolute value of the strain
does not exceed 0.45 for the first 300 s.
The change of parameter νσ for different levels of the

fractional parameter provided the same maximum dis-
placements of the tooth root in the PDL. Figure 3 shows
the change of displacements with time for the load of 2
N and retardation time of 550 s. The choice of a combi-
nation of the constants γ and νσ was based on the above
condition εnn ≤ 1, following from the first expression
in (3).
Figures 2 and 3 demonstrate that a simultaneous change

of the fractional parameter γ and parameter νσ allows
us to specify a necessary transitional phase and the
maximum displacement of the tooth root in the PDL;
this can be achieved for any load. The magnitude of
the maximum strain can be defined by changing the
magnitude of parameter νσ , depending on the level
of load.
According to results in Fig. 3, an increase of the frac-

tional parameter leads to an increase in duration of the
transition phase and in the level of the maximum dis-
placement of the tooth root (for constant values of νσ

and τσ ).
Evolution of the normal strains εnn for the second

particular case, corresponding to Eq. (9), are shown
in Fig. 4 (the magnitudes of dimensions of the tooth
root, constants of elasticity of the periodontal liga-
ment remained the same). Since in this case the largest

Fig. 3 Effect of model parameters on displacement evolution:
1 −γ = 0.25 and νσ = 1850, 2 −γ = 0.30 and νσ = 1520,
3 − γ = 0.35 and νσ = 1300

Fig. 4 Evolution of strain εnn in xy-plane during translational
displacement of tooth root along x-axis for various levels of load F:
1 – 2 N; 2 – 9.5 N

deformations occur near the alveolar crest, the defor-
mations at the point with coordinates

(
x = b√

1−e2
, 0, h

)
are defined. Parameters γ , τγ and νγ of the relax-
ation kernel are equal to 0.35, 550 s and 1.3 · 103,
respectively.
Figure 4 demonstrates that normal strains during the

translational motions of the tooth root along the x-
axis under the load of 2 N do not exceed 0.2. This
can be explained by higher stiffness a11 of the PDL
compared with a22. To displace the tooth root by
distance δ along the normal to the surface in xy-
plane, it is necessary to apply a force of some 9.5 N
(Fig. 4).

Hydrostatic stress of PDL
As known, regions of the PDL exposed to highest hydro-
static stresses govern a bone-remodelling process during
an orthodontic tooth movement (De Pauw et al. 2003;
Middleton et al. 1996; Vollmer et al. 1999). Hydrostatic
stress is determined as

σh = 1
3
(σxx + σyy + σzz). (12)

As follows from (12) and the discussion above, the
hydrostatic stress in the PDL during the translational
displacement of the tooth root along the vertical axis is

σh = Eu0y cos(α)

3δ(1 − 2ν)
.

Diagrams of distribution of hydrostatic stresses on the
tooth-root surface at various times are presented in Fig. 5
for the same magnitudes of load, geometric and physical
parameters of the tooth root and the PDL.
Apparently (see Fig. 5), only areas in the close vicin-

ity of the root’s apex are characterised by hydrostatic
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Fig. 5 Diagrams of hydrostatic stresses at different moments during translational displacement of tooth root along y-axis: 1 – 1 s; 2 – 10 s; 3 – 300 s

stresses of considerable magnitudes. The highest stresses
for the vertical displacement of the tooth root occur at
its apex, while the lowest are observed near the alve-
olar crest. At t = 1 s, the hydrostatic stress in the
apical region is larger than that near the alveolar crest by
approximately 14.1 times. With continuing load action,
this ratio increases: at t = 10 s it is 14.25, at t =
300 s it is 14.4. A prolonged action of high hydrostatic
stresses in the apical region of the tooth root can lead
to bone resorption and detrimentally affect the patient.
Note that bone resorption in the apical region during

the tooth motion (including intrusion) was described in
(Jeon et al. 1999; Mohandesan et al. 2007).
Stress distributions on the internal surface (1) of the

PDL during the translational displacement of the tooth
root along the x-axis under loads of 2 N and 9.5 N are
shown in Fig. 6. The dimensions of the tooth root, elas-
tic parameters of the PDL are the same, parameters γ ,
τγ and νγ of the relaxation kernel are equal to 0.35, 550
s and 1.3 · 103, respectively. In Fig. 6, the coordinates
x and z are in millimeters while the hydrostatic stress
is in MPa.

Fig. 6 Evolution of hydrostatic stresses with time during translational displacement of tooth root along x-axis under 2 N (a) and 9.5 N (b): 1 – 1 s;
2 – 10 s; 3 – 300 s
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As seen in Fig. 6, the hydrostatic stress on a part of
the internal surface of the PDL corresponding to x > 0
are compressive; on the opposite side of the PDL the
tension occurs. This indicates the bone-resorption pro-
cess in the load direction and bone remodelling on the
opposite side of the tooth root. The largest stresses are
observed near the alveolar crest. At the point of the PDL
corresponding to the apex of the tooth root the hydro-
static stresses vanish. However, in the apical region of the
PDL, in particular at x > 0.9 mm, the stresses reach suffi-
ciently large values, comparable to those near the alveolar
crest. Therefore, we can conclude that the outer contours
of the hydrostatic-stress diagrams are limited by nearly
straight portions (except for a small apical region). The
bone remodelling would occur uniformly along the root
surface during the translational displacement along the x-
axis, while beneath the apex of the tooth root the bone
would not change. An increase in the maximum hydro-
static stresses in the PDL with time during translational
displacements of the tooth along the y-axis and x-axis
occur in a similar way. The magnitude of maximum stress
at t = 10 s and t = 300 s exceeds the respective value
at t = 1 s by a factor of approximately 1.75 and 2.55,
respectively.

Effect of series truncation
A number of terms in the series of the approximate solu-
tion (11) affects substantially the calculated displacements
of the tooth root with time. Especially significant is their
impact at small values of the fractional parameter. In par-
ticular, when γ = 0.25, the effect of the number of
terms of a series becomes negligible for n ≥ 20, for
γ = 0.5 this is achieved at n ≥ 10, and for γ = 0.75 at
n ≥ 3.

Effect of inertia
To assess the effect of inertia, presented by the term
Md2u0y(t)

dt2 in solution (11), calculations were performed
for the following ranges of parameters: retardation time –
between 350 s and 550 s, the fractional parameter – from
0.25 to 0.90, and parameter νσ – from 1.3 · 103 to 1.8 · 103.
The tooth mass, as discussed, was 1 · 103 kg, while the
tooth-root dimensions and the elastic properties of the
PDL were as above. The analysis indicated that in the time
interval from 0 to 300 s the contribution of the inertial
term was of the order of 10−11 m/s2 to 10−10 m/s2. Thus,
the solution in the form of (11) can be used as a sufficiently
good approximation of the vertical movement of the tooth
root.

Discussion
The aim of this study is the development of a mathe-
matical model for description of experimentally observed

viscoelastic and time-dependent behaviours of the PDL.
In particular, the analysis is focused on the evolution
of translational displacements of the tooth root in the
PDL under the vertical load (intrusion). The calcu-
lated tooth- root displacement with time at a constant
load allowed comparing the behaviour of the viscoelas-
tic model with the fractional exponential kernel with
that of the known nonlinear viscoelastic model of the
tooth-root movement developed in the studies (Qian
et al. 2009; Slomka et al. 2008). The model was used
to determine the level of hydrostatic stresses in the
PDL under the constant intrusive load. The analysis
showed that these stresses in the PDL remained prac-
tically constant along the surface of the tooth root,
except for the region near the root apex. Hydrostatic
stresses in this region were significantly higher, indi-
cating potential bone resorption during the orthodontic
motion.

Conclusions
The considered model employs the relaxation kernel
with a fractional exponential function and is an exten-
sion of the linear scheme for an almost incompressible
PDL (with the Poisson’s ratio equal to 0.49), presented
in studies (Provatidis 2001; Van Schepdael et al. 2013)
it describes both the elastic and viscoelastic behaviours
of the PDL. The current lack of experimental data on
the time-dependent behaviour of the PDL under vari-
ous loading conditions hinders development of adequate
analytical approaches. One of the limitations of the sug-
gested approach is the increase in the maximum dis-
placement of the tooth with the increased load (similar
to the behaviour of the model (Slomka et al. 2008)). At
the same time, the proposed model allows generaliza-
tion of the known analytical models of the viscoelastic
PDL by introduction of the instantaneous and relaxed
elastic moduli, as well as the fractional parameter. The
advantage of this model is in the use of the fractional
parameter γ and the parameter vσ improving the descrip-
tion of various pathological processes and age-related
changes in the PDL. The fractional parameter makes
it possible to take into account different behaviours of
the periodontal tissue under short- and long-term loads.
For instance, it allows assessing the change in the time
interval of a transition phase for a given maximum dis-
placement. Another advantage of the phenomenological
model proposed in this study is its capability to predict
the behaviour of the PDL in conditions, not feasible in the
experiment.
The developed approach can be applied to determine a

magnitude of a load for orthodontic tooth movement cor-
responding to optimal stresses, as well as to simulate bone
remodelling on the basis of changes of stresses and strains
in the PDL during orthodontic movements.
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Appendix
The coefficients of system (7) has the following form:

a11 = A
∫∫
F

(b2(1 − 2ν) cos(α) − 2h(2Hx(1 − e2)(1 − ν) + Gz(1 − 2ν)) sin(α))dF ,

a16 = a61 = −A
∫∫
F

((4(1 − e2)hνx2 + b2y(1 − 2ν)) cos(α) +

+ (b2Hx(1 − 2ν) + 2hy(2Hx(1 − e2)(1 − ν) + Gz(1 − 2ν))) sin(α))dF ,

a22 = A
∫∫
F

(b2(1 − ν) cos(α) + h(1 − 2ν)(Hx(1 − e2) + Gz) sin(α))dF ,

a33 = A
∫∫
F

(b2(1 − 2ν) cos(α) + 2h(Hx(1 − e2)(1 − 2ν) + 2Gz(1 − ν) sin(α))dF ,

a34 = A
∫∫
F

((b2y(1 − 2ν) + 4hνz2) cos(α) +

+ (2Hhxy(1 − e2)(1 − 2ν) + Gz(b2(1 − 2ν) + 4hy(1 − ν))) sin(α))dF ,

a44 = A
∫∫
F

((2hyz2 + b2((1 − 2ν)y2 + 2(1 − ν)z2)) cos(α) +

+ (2hHx(1 − e2)(1 − 2ν)(y2 + z2) + Gz(b2y + 2h(2y2(1 − ν) + (1 − 2ν)z2))) sin(α))dF ,

a55 = A
∫∫
F

(b2(1 − 2ν)(x2 + z2) cos(α) +

+ 2h(Gz(e2x2 + (1 − 2ν)(x2 + z2)) + Hx((x2 + z2)(1 − 2ν) − e2((1 − 2ν)x2 + 2(1 − ν)z2))) sin(α))dF ,

a66 = A
∫∫
F

((2hx2y(1 − e2) + b2(2(1 − ν)x2 + (1 − 2ν)y2)) cos(α) +

+ (b2Hxy + 2h(Hx(1 − e2)((1 − 2ν)x2 + 2(1 − ν)y2) + G(1 − 2ν)(x2 + y2)z)) sin(α))dF ,

A = E∞
2δb2(1 + ν)(1 − 2ν)

,H = x(1 − e2)√
(1 − e2)2x2 + z2

,G = z√
(1 − e2)2x2 + z2

.
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