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Abstract

Background: Fiber–reinforced polymer composite materials are widely used in different branches of industry due
to their distinctive features such as high specific strength and stiffness and due to as considerable opportunity to
formulate materials with controllable variation of properties in response to the action of external factors (smart-
materials). A distinguishing feature of products made of composite materials is that the processes of product and
material fabrication are inseparable. Therefore the estimation of composite properties based on the composite
architecture and properties of the reinforcing fibers and matrix is a very actual task.

Methods: The model of polymer behavior at glass transition recently developed by the authors was generalized to
the case of fiber-reinforced polymer matrix composites using two approaches: one is base on the concept of free
specific energy, the other – on the growth of matrix stiffness. For homogeneous materials these two approaches
are of equal worth, whereas for composite materials they give different results under deformation in the transverse
direction. The stiffness growth approach is more accurate, but is very expensive computationally and, is highly
sensitive to the experimental data errors.

Results: Using the finite element method and averaging technique the thermoelastic constants of composites
containing different types of fibers in the glassy and high-elastic states were calculated based on the fiber and
matrix properties. Softening of the matrix has an insignificant effect on the longitudinal modulus of a composite
but leads to a considerable decrease of the transverse and shear moduli. The coefficient of thermal expansion in
the transverse direction is much higher than the coefficient of thermal expansion in the longitudinal direction,
especially when the composite is in the high-elastic state.

Conclusion: The model of polymer behavior at glass transition recently developed by the authors can be
generalized to the case of fiber-reinforced polymer matrix composites. The thermoelastic constants of composites
containing different types of fibers can be calculated from the fiber and matrix properties using the finite element
method and averaging technique.
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Background
Fiber–reinforced polymer composite materials are widely
used in different branches of industry due to their dis-
tinctive features Among technical characteristics of con-
siderable commercial importance are high specific
strength and stiffness, low specific density, high fracture
toughness and fatigue strength, as well as considerable
opportunity to formulate materials with controllable
variation of properties in response to the action of exter-
nal factors (smart-materials).
The materials under consideration consist of fibrous

filling material, which when combined with a polymer
binding material, forms a fiber–reinforced polymer
matrix composite. As a rule, reinforcing fibers have high
longitudinal stiffness and tensile strength, while a com-
posite matrix has high toughness, which provides super-
ior mechanical characteristics of composites. The
structure of these materials is responsible to the anisot-
ropy of their physico-mechanical properties.
A distinguishing feature of products made of compos-

ite materials is that the processes of product and mater-
ial fabrication are inseparable. It can be said with
assurance that each product is unique in showing prop-
erties that may be different in different its parts. It
means that physico-mechanical properties of the prod-
uct cannot be estimated by a standard approach from
the test data of specimens made of the same material.
Therefore at present, the problem of current concern is
the estimation of composite properties based on the
composite architecture and properties of the reinforcing
fibers and matrix.
The process of composite formation proceeds in a cer-

tain temperature range. The temperature regimes arising
in this interval are accompanied by relaxation transitions
to glassy and rubber-like states in the polymer matrix.
Organic plastic materials also demonstrate a strong de-
pendence of fiber mechanical properties on temperature.
All these thermomechanical processes give rise to re-
sidual/technological stresses.
Predictive modeling of the composite behavior based

on the properties of its components is the objective of
many studies (Christensen 1979; Hill 1964a, b; 1965a, b;
1966; Malmeister et al. 1980; Pobedrya 1964; Sokolkin
Yu and Tashkinov 1984; Vildeman et al. 1997). Thus,
works (Christensen 1979; Hill 1964a, b; 1965a, b; 1966;
Malmeister et al. 1980; Vildeman et al. 1997) are devoted
to modeling the thermomechanical behavior of fiber-
reinforced composites. The focus of authors’ attention in
these studies are such problems as estimation of elastic
moduli of composite materials based on the properties
of their components (Christensen 1979; Malmeister et
al. 1980; Pobedrya 1964; Sokolkin Yu and Tashkinov
1984, Dinzart and Lipiński 2010, Dupaix and Boyce
2006, Ge et al. 2012), modeling of nonlinear and

transient processes in a composite material (Vildeman et
al. 1997, Bugakov 1989), damage accumulation and frac-
ture of composites (Sokolkin Yu and Tashkinov 1984;
Vildeman et al. 1997, Bugakov 1989, Christensen 1979).
However, the above studies are concerned mainly with
the processes of deformation and fracture in finished
composites.
On the other hand, there are a lot of papers (Askadskiy

1973; Bartenev and Zelenev 1976; Begishev et al. 1997;
Brader et al. 2009; Buckley and Jones 1995; Bugakov 1989;
Dinzart and Lipiński 2010; Dupaix and Boyce 2006;
Henann and Anand 2008; Liu et al. 2006; Lustig et al.
1996; Nguen et al. 2008; Qi et al. 2008; Scalet et al. 2015;
Shardakov and Golotina 2009; Sollich 1998; Tervoort et
al. 1996; Xiao et al. 2013) (including the works by the
present authors (Matveenko et al. 2012; 2015), which
investigate the thermomechanical behavior of homoge-
neous polymers (not composites) at glass transition/sof-
tening temperatures. The effect of shape memory, which
is a frequent consequence of thermorelaxation transitions,
is investigated in (Dinzart and Lipiński 2010; Liu et al.
2006; Lustig et al. 1996; Nguen et al. 2008; Qi et al. 2008;
Scalet et al. 2015; Shardakov and Golotina 2009; Xiao
et al. 2013).
Simulation of thermorelaxation transitions in com-

posite materials is a less explored area, which at
present is being studied intensively. Most of recently
published works on this subject are concerned with
composite smart materials exhibiting the shape memory
effect (Ge et al. 2012; 2014; Mulina and Sawant 2009; Tan
et al. 2014, Srivastava et al. 2010a, b, Tervoort et al. 1996),
in which the relaxation and phase transitions can occur
both in the matrix (Ge et al. 2014; Mulina and Sawant
2009; Tan et al. 2014) and in the reinforcing fibers
(Ge et al. 2012).
In this paper, we generalize a thermomechanical model

of composite material undergoing glass transition devel-
oped early by the authors in (Matveenko et al. 2012; 2015)
to the case of fiber-reinforced composite materials with
polymeric matrix, which due to variation of temperature
can undergo transition from the high-elastic to the glassy
state and back. The relations constructed in these papers
are based on the specific free energy of the composite,
which is used as a scalar measure of the state of the mater-
ial undergoing glass transition. We introduce a technique
for determining the equation parameters in terms of the
effective properties of the composite. We also develop a
more general model, in which glass transition is consid-
ered as the process of enhancement of the matrix stiffness.
We compare the two models to show their advantages
and drawbacks. A numerical technique has been proposed
to determine the effective material constants and
functions for unidirectional fiber-reinforced composites
with epoxy matrix undergoing glass transition due to
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temperature variation. The investigation has been per-
formed taking no account of viscous elasticity.

Methods
Polymer matrix
The polymer matrix consists of very long, linear, branched
or cross-linked macromolecules, which comprise a large
number of repeatable chains. The structure of the macro-
molecule is specified by configuration and conformation.
Configuration is the mutual arrangement of atoms in the
molecule, which cannot be changed without breaking the
existing chemical bonds. Conformation is the relative
spatial arrangement of atoms in the molecule, which can
vary under the action of thermal motion by rotation
around single carbon-carbon bonds. Depending on the
structure the polymers can be classified as thermoplastics
and reactoplastics. Thermoplastics have a linear or
branched structure and can transform from a plastic to a
solid state and change back. Reactoplastics possess a spatial
cross-linked structure, in which the neighboring chains are
linked by chemical covalent bonds, the strength of which is
as high as the strength of the bonds in the polymer chains.
Polymers of this group are unable to pass into a reversible
plastic state. They can only decompose chemically when
heated to certain temperatures. The molecules of polymers
can form supermolecular structures, one being knows as a
fluctuation network. Physically, this implies that some seg-
ments of molecules in microvolumes form the short-range
order structures with higher density and more intensive
intermolecular interaction (fluctuation network nodes).
Subject to thermal or mechanical loads these structures
may decay in some places and emerge in other places.
The above mentioned features of the molecular structure

specifies the behavior of solid polymers, which depending
on temperature and mechanical loads can exist in two states
– glassy and high-elastic. At low temperatures the polymer
behaves as glass. Under the action of applied stresses the
conformational motion of polymer chains does not occur,
which means that the shape of macromolecules does not
change. Deformation in this state is small and is related to
changes in the interatomic distances and bond angles and
also to a change in the average intermolecular space.
Beginning with some temperature the deformability of

a polymer increases causing its transition into high-
elastic state. In this state the strain can be as high as a
few hundred percent and is associated with the con-
formational movements of macromolecules, the failure
of fluctuation network nodes in some places and their
formation in other less strained places. It should be
noted that a transition from the glassy to the high-
elastic state is not an instantaneous process. It occurs
within a certain temperature range, which suggests that
there exists some transitional region Tg2 ≤ T ≤ Tg1.

At temperature lower than the glass transition
temperature and high level of stresses the polymer under-
goes forced high-elastic-deformation, which involves un-
freezing of segmental mobility of macromolecules.
To describe the thermomechanical behavior of polymers

undergoing glass transition we use the model developed
by the authors in (Matveenko et al. 2012). The model has
been elaborated using the following hypothesis:

1) The characteristic times of external actions are
much shorter than the relaxation times of a polymer
in the glassy state.

2) Characteristic times of external actions are far
beyond the limits of the relaxation spectrum of a
polymer in the high-elastic state.

In this case, outside the glass transition temperature
range the polymer behaves as an elastic material. The
behavior of the polymer matrix in the glass transition
temperature range at decreasing temperature is specified
by increase in the mechanical stiffness of the polymer
due to a decrease in the segmental mobility of molecules
and a growth of the energy of intermolecular interaction.
At the phenomenological level this looks like a super-
position of additional elastic bonds onto the original
polymer network in the high-elastic state. Note that each
of these bonds at the time of its formation is assumed to
be nondeformed.
The degree of completeness of glass transition process

of a polymer-matrix composite is described by the quan-
tity N ∈ [0, 1] called degree of vitrification. Here 0 refers
to a polymer in the high-elastic state, 1 – to a polymer
in the glassy state. A change in the degree of vitrification
at time tj by ΔNj is accompanied by an increase of the
free energy of additional bonds in the vitrified material
by the amount F2(ε − εj)ΔNj. Here F2 is the free energy
of additional bonds in the fully vitrified polymer and εj is
the strain at time tj. Thus, for a polymer in the state cor-
responding to the degree of vitrification (conversion)
N(t) the expression for free energy is

F ε tð Þð Þ ¼ F1 ε tð Þð Þ þ
Z
0

N tð Þ
F2 ε tð Þ−ε τð Þð ÞdN τð Þ; ð1Þ

where F1 is the free energy of the material in the high-
elastic state.
For the isotropic polymer the expression for free energy

in the high-elastic state and the energy of bonds formed
in the glass transition temperature range is given as

Fi ¼ 1
2

Bi þ 4
3
Gi

� �
I21−2GiI2−3BiI1εT ; i ¼ 1; 2; ð2Þ

where I1 = θ = εkk, I2 = 0.5(εmmεnn − εmnεmn) are the first
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and the second invariants of the strain tensor, G2 =Gg −
G1; B2 = Bg − B1; G1, B1 are the shear and bulk moduli in
the high-elastic state, Gg, Bg are the shear and bulk mod-

uli in the glassy state, εT ¼
Z T tð Þ

TH

α Tð ÞdT is the

temperature deformation.
The physical relations are written on the basis that

σ ij ¼ 1
2

∂F
∂εij

þ ∂F
∂εji

� �
;

which leads to

sij tð Þ ¼ 2G1eij tð Þ þ 2G2

ZT tð Þ

TH

eij tð Þ−eij τð Þ� �
dN T τð Þð Þ ð3aÞ

σ tð Þ ¼ B1 θ tð Þ−3εT tð Þ½ � þ B2

ZT tð Þ

TH

f θ tð Þ−3εT tð Þ½ �

− θ τð Þ−3εT τð Þ½ �gdN T τð Þð Þ
ð3bÞ

where

eij ¼ εij−
1
3
θδij; sij ¼ σ ij−σδij; σ ¼ 1

3
σkk : ð4Þ

For a detailed description of the glass transition
process it is necessary to evaluate the dependence of the
degree of conversion on time N(T). As opposed to the
process of crystallization, the process of structural glass
transition is not accompanied by generation or absorp-
tion of heat. It means that a certain value of temperature
(varying with a constant rate) is associated with a certain
value of the conversion degree N(T). Typical N(T)
curves are displayed in Fig. 1. Such relationships are well
described by the probability density functions widely
used in the mathematical statistics. The reason why the
preference is given to these function is that in compli-
ance with the molecular-kinetic theory (Word 1975) a
decrease in the segmental mobility of polymers undergo-
ing glass transition is a stochastic process.
Particularly, in the case of symmetric distribution of

function N(T) with respect to the glass transition
temperature there is good reason to use an expression
for the Gaussian probability density function. In this
case, with reference to the rate of variation of conversion
degree we can write

dNG

dT
¼ −

1ffiffiffiffiffiffi
2π

p
γ
exp −

1
2

T−Tg _T
� �

γG

 !" #2
; ð5Þ

where index «G» denotes the use of the Gaussian distribu-
tion law. Dispersion γ is determined in terms of the breadth

of the glass transition interval using formula γG ≅ (Tg1 −
Tg2)/6, and the glass transition temperature Tg is taken as a
mathematical expectation. In the general case Tg should be
considered dependent on the rate of temperature variation
_T : , which is a well–known fact supported by experiments
(Word 1975, Xiao et al. 2013). The minus sign suggests an
increase in the degree of conversion N(T) on cooling. The
degree of conversion corresponding to temperature T(t)
will be determined by integrating the expression for the rate
of polymer conversion

NG T tð Þð Þ ¼ −
1ffiffiffiffiffiffi
2π

p
γ

ZT tð Þ

TH

exp −
1
2

T τð Þ−Tg _T
� �

γG

 !2" #
dT τð Þ:

ð6Þ
There are some other more convenient formulas,

which describe the kinetics of glass transition based on
the analytical relationships between the rate of conver-
sion, temperature and rate of temperature variation. One
of such models is the Laplace distribution, which can be
applied in the case of symmetric dependence of the con-
version degree on temperature.

NL T ; _T
� � ¼ 1−0; 5e

T−Tg _Tð Þð Þ
γL ; T < Tg ;

0; 5e
T−Tg _Tð Þð Þ

γL ; T≥Tg ;

8><
>: ð7Þ

where γL is the parameter determining the width of the
glass transition temperature range.
If the distribution N(T) shows the pronounced asym-

metry about some conventional central point in the glass
transition temperature range, one should use the asym-
metrical laws of probability distribution, for example the
Weibull distribution law

N(T)

Fig. 1 Temperature dependence of elasticity modulus and degree
of polymer conversion
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NW T ; _T
� � ¼ 1; T < TgW ;

e−λ T−TgW _Tð Þð Þβ ; T≥TgW :

8<
: ð8Þ

Reinforcing fibers
Reinforcing fibers are elastic isotropic (fiberglass), elastic
anisotropic (boron fiber, carbon fiber) and temperature
dependent elastic anisotropic (organic fiber) materials.
The constitutive relations for these materials can be
written in the general form as

σ ij ¼ Ca
ijkl Tð Þ εkl−εaTkl Tð Þ� �

: ð9Þ

Constitutive relations for fiber reinforced composites
The model developed by the authors in (Matveenko et
al. 2012) can be generalized to the description of fiber
reinforced composites undergoing glass transition. As in
the case of isotropic material, two approaches can be ap-
plied. The former relies on the concept of free energy
and the latter – on the concept stiffness enhancement.
In the isotropic case, these two approaches yield identi-
cal results. In the anisotropic case, the results are found
to be different.
Let us consider the first approach, in which F1 denotes

the specific free energy of the composite with highly
elastic binding medium, and F2 denotes the specific free
energy of additional bonds in the completely vitrified
composite. We assume that the degree of conversion
N(T) is described by the formula identical to that of the
binding material. Then the expression for the specific
free energy of composite material can be written as

F ε̂ tð Þð Þ ¼ F1 ε̂ tð Þð Þ þ
Z
0

N tð Þ
F2 ε̂ tð Þ−ε̂ τð Þð ÞdN τð Þ; ð10Þ

where

F1 εð Þ ¼ 1
2
C 1ð Þ

ijklεijεkl−C
1ð Þ
ijklεijε

T1
kl −S1T ;

F2 εð Þ ¼ 1
2
C 2ð Þ

ijklεijεkl−C
2ð Þ
ijklεijε

T2
kl −S2T ;

εklT1 ¼
ZT
TH

α 1ð Þ
kl Tð ÞdT ; εT2kl ¼

ZT
TH

α 2ð Þ
kl Tð ÞdT

ð11ÞC 1ð Þ
ijkl; α 1ð Þ

kl are the components of the effective stiffness

tensors and coefficients of linear temperature expansion

of the composite at T ≥ Tg1; C 2ð Þ
ijkl; α 2ð Þ

kl are the same

quantities for bonds formed in the process of vitrifica-

tion of the matrix. The procedure of evaluating C 2ð Þ
ijkl;

α 2ð Þ
kl in terms of the composite properties in the high-

elastic C 1ð Þ
ijkl; α 1ð Þ

kl and glassy Cg
ijkl; αgkl states is given

below.
After submitting (11) into (10) we get

σ ij tð Þ ¼ 1
2

∂F
∂εij

þ ∂F
∂εij

� �

¼ C 1ð Þ
ijkl Tð Þεkl tð Þ þ C 2ð Þ

ijkl Tð Þ
ZT tð Þ

TH

εkl tð Þ−εkl τð Þ½ �dN T tð Þð Þ

−C 1ð Þ
ijkl Tð ÞεT1kl tð Þ−C 2ð Þ

ijkl Tð ÞN Tð ÞεT2kl tð Þ

þC 2ð Þ
ijkl Tð Þ

ZT tð Þ

TH

εT2kl τð ÞdN T τð Þð Þ

ð12Þ

To determine C 2ð Þ
ijkl; α 2ð Þ

kl we consider the behavior of

the composite in the glassy state (T > Tg2). One should
bear in mind that the vitrification degree N = 1 does not
change with temperature, so that the integrals in the
right-hand sides of (12) turn into constant quantities.
Let at a fixed temperature T the material deform, which
implies that the strain tensor components gain the incre-
ment Δεke. In this case the stress varies as

Δσ ij ¼ C 1ð Þ
ijkl Tð Þ þ C 2ð Þ

ijkl Tð Þ
	 


Δεkl

Since the composite according to the problem formu-
lation is considered as fully cured, the coefficient of pro-
portionality between Δσij and Δεkl is the component of
the elasticity tensor of the material in the glassy state

C 2ð Þ
ijkl . Then it follows that

C 2ð Þ
ijkl ¼ Cg

ijkl−C
1ð Þ
ijkl ð13Þ

We assume further that the material maintaining the
same temperature is heated by ΔT. Considering the ma-
terial as being unstrained, we obtain from (12) the
expression for stress increments

ΔσT
ij ¼ −C 1ð Þ

ijkl Tð Þ−C 2ð Þ
ijkl Tð ÞΔεT2kl ð14Þ

where ΔεTikl ≡ε
Ti
kl ΔTð Þ. Then we define the same quantity

in terms of the effective characteristics of the composite
in the glassy state

ΔσT
ij ¼ −Cg

ijkl Tð ÞΔεTgkl ð15Þ

where ΔεTgkl ¼ αgkl Tð ÞΔT . Equating the right-hand sides
of (14), (15), we obtain in the general case the system of
six equations for the unknown independent components
of tensor ΔεTgkl . For transversally isotropic and ortho-
tropic materials the number of independent components
of the strain tensor reduces to three.
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X3
j¼1

ΔεT2ii C 2ð Þ
jjii Tð Þ ¼

X3
j¼1

ΔεTgii C
g
jjii Tð Þ−ΔεT1ii C 1ð Þ

jjii Tð Þ
	 


ð16Þ

Solving the system of three linear Eq. (16), we obtain the

sought values of ΔεT2ii . If ΔT = 1, then α 2ð Þ
ii ¼ ΔεT2ii , and the

free deformation εT2ii can be determined using the formula

εT2ii ¼
ZT tð Þ

TH

α 2ð Þ
ii Tð ÞdT ð17Þ

For approximate calculations it is allowable to take

α11 2ð Þ ¼ αg11; α 2ð Þ
22 ¼ α 2ð Þ

33 ¼ 0; 5 α 1ð Þ
22 þ αg22

	 

.

The above technique of constructing the physical rela-
tions for composite materials with a vitrifying matrix (12)
is based on the concept of free energy. The value of the
free energy is invariant to the choice of coordinate system
and does not take into account the anisotropy of the con-
tribution of the vitrification degree to polymer stiffness.
The isotropic polymers are lost to such effect, whereas
composite materials characterized by a considerable dir-
ectional variation of properties are rather sensitive to the
conversion degree. The second stiffness-based approach,
which like the free energy approach, relies on the same
physical and phenomenological considerations, allows us
to eliminate this drawback.
Let us consider the process of nonisothermal deform-

ation of composite material, which at the initial moment
of time is heated to the temperature above the glass tran-
sition interval. Under these conditions the composite be-
haves itself as an elastic medium with the properties

С̂ 0;Tð Þ; α̂ 0;Tð Þ . Here С̂− is the fourth-order tensor of
stiffness properties of the medium, α̂ is the second-order
tenor of the effective linear coefficients of thermal expan-
sion. For both tensors the temperature is taken to be the
second argument and the degree of conversion – the first
argument. Let at time t1, corresponding to entering into
the glass transition interval (T(t1) ≤Tg1), a decrease in
temperature by ΔT1 gives rise to the formation of new
bonds proportional to ΔN(t1), which in turn, leads to the
enhancement of stiffness by ΔĈ. The quantity ΔĈ can be
represented as a sum

ΔĈ N t1ð Þ;T t1ð Þð Þ ¼ ΔĈT N t1ð Þ;T t1ð Þð Þ þ ΔĈN N t1ð Þ;T t1ð Þð Þ;
ð18Þ

where ΔCN = ∂Ĉ/∂NΔN; ΔCT = dĈ/dtΔt − ΔCN. The value
of the second term is specified by an increase in the
stiffness of vitrifying composite due to the formation of
new intermolecular bonds in the binding agent. Their
unstrained (natural) state coincides with the current
(actual) state of the material at the time of their formation
(stiffness enhancement without tension (Wang et al.

2001)). Therefore, the increment of the stress tensor can
be expressed as
Δσ t1ð Þ ¼ ΔĈT N t1ð Þ;T t1ð Þð Þ : ε̂ t1ð Þ þ Ĉ N t1ð Þ;T t1ð Þð Þ : Δε̂ t1ð Þ,

where ε̂ ¼ ε̂−
ZT
TH

α̂ N τð Þ;T τð Þð ÞdN τð Þ, ε̂ is the strain tensor,

σ̂ is the stress tensor, Δε̂ is the increment of the strain
tensor until the time of subsequent variation in the rate
of conversion of the composite. For arbitrary time ti
associated with temperature Tg2 < T(ti) < Tg1 and the
rate of conversion 0< N(ti) <1 the relation Δσ = f(Δε)
takes the following form

Δσ̂ tið Þ ¼ Ĉ N tið Þ;T tið Þð Þ : ε̂ tið Þ þ ΔĈT N tið Þ;T tið Þð Þ : Δε̂ tið Þ
ð19Þ

The values of stresses at the arbitrary moment of time tk
are determined by summing the prehistory of the process

σ̂ tkð Þ ¼
Xk
i¼0

Δσ̂ tið Þ: ð20Þ

Upon substituting (19) into (20) we obtain using (18)
the following equation:

σ̂ tkð Þ ¼
Xk
i¼0

Ĉ N tið Þ;T tið Þð Þ : Δε̂ tið Þ
þΔĈ N tið Þ;T tið Þð Þ : ε̂ tið Þ
−ΔĈN N tið Þ;T tið Þð Þ : ε̂ tið Þ

2
6664

3
7775: ð21Þ

The implementation of transition to the limit allows
us to write the constitutive Eq. (21) in the integral form

σ̂ tð Þ ¼ Ĉ N tð Þ;T tð Þð Þ : ε̂ tð Þ−
Z

N 0ð Þ

N tð Þ

C
0
N N τð Þ;T τð Þð Þ : ε̂ τð ÞdN ;

ð22Þ

where С̂
′

N ¼ ∂Ĉ=∂N . Using expansion (18) the expres-
sion for the current stiffness of the material is written as

Ĉ N tð Þ;T tð Þð Þ ¼ Ĉ 0;T tð Þð Þ þ
Z

N 0ð Þ

N tð Þ

C
0
N N τð Þ;T τð Þð ÞdN :

The substitution of this expression into (22) followed by
combining like terms allows us to write the constitutive
relations in the following form:

σc tð Þ ¼ Ĉ 0;T tð Þð Þ : ε̂g tð Þ þ
ZN tð Þ

0

Ĉ
0

N N τð Þ;T τð Þð Þ : ε̂
g
tð Þ−ε̂g τð Þ

h i
dN:

ð23Þ
Since Eq. (23) are valid for the material subject to cool-

ing from TH >Tg1, at the initial time the rate of conversion
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is N(0) = 0 and in (23) the integration limit is entitled to a
change. Index “g” denotes glass transition. We will further
suppose that after being cooled to temperature TH < Tg2,
the composite is subject to heating according to deform-
ation scheme (23). The bonds with frozen strains formed
in the process of cooling are destroyed. Let at time
ticorresponding to the rate of conversion and temperature
Ti some fraction of bonds ΔNi be lost due to a rise of
temperature. By analogy with (19) the expression for
the stress increment up to the moment of subsequent
temperature variation is written as

Δσ̂H ¼ Ĉ N tið Þ;T tið Þð Þ : Δε̂h tið Þ
þΔĈT Ni;T tið Þð Þ : ε̂h tið Þ þ
þΔĈN N tið Þ;T tið Þð Þ : ε̂

h
tið Þ−ε̂g tið Þ

h i
:

ð24Þ

The strains and strain increments indexed “h”corre-
spond to the stage of heating. The difference com-
prising the last term in the right-hand side of
expression (24) means that disappearance of ΔNi

bonds leads to a release of strains “frozen” during vit-
rification, which results in a stress jump proportional
to the difference of current strains corresponding to
N(ti) in the soften and cured polymers. This can be
explained by the fact that the unstrained state of a
given number of bonds is identical to the current
state of the medium at the time of their formation.
Representing ΔĈT in terms of ΔĈN, ΔĈ as in (18), expres-
sion (24) can be transformed into

Δσ̂H tið Þ ¼ Ĉ N tið Þ;T tið Þð Þ : Δε̂h tið Þþ
þ ΔĈ N tið Þ;T tið Þð Þ−ΔĈN N tið Þ;T tið Þð Þ� �

: Δε̂
h
tið Þ þ

þΔĈN N tið Þ;T tið Þð Þ : ε̂
h
tið Þ−ε̂g tið Þ

h i

Upon combining like terms and passing first to the
integral sum and then to the integral we arrive at the
expression for the stress–strain state in a softened
composite

Δσ̂H tð Þ ¼ Ĉ N tð Þ;T tð Þð Þ : Δε̂h tið Þ−
ZN tð Þ

1

Ĉ
0

N N τð Þ;T τð Þð Þ : ε̂g τð ÞdN τð Þ−

−
Z1
0

Ĉ
0

N N τð Þ;T τð Þð Þ : ε̂g τð ÞdN τð Þ

Combining the two integrals in the right-hand-side of
the expression we obtain the final expression for phys-
ical relations:

Δσ̂H tð Þ ¼ Ĉ N tð Þ;T tð Þð Þ : Δε̂h tið Þ−
ZN tð Þ

0

Ĉ
0

N N τð Þ;T τð Þð Þ : ε̂g τð ÞdN τð Þ

ð25Þ

The stress–strain relations for polymer composites
undergoing glass transition, which are derived based on
the stiffness-growth method (23), (25), are more general
compared to the “energy” relations (12) and therefore
more accurate in describing the glass transition processes.
However, they are awkward to handle in practice because
of the necessity for accurate evaluation of the stiffness ten-
sor derivative with respect to the conversion degree and

calculation of tensor relations С̂ Nð Þ; ε̂o Nð Þ. In numerical
computation of thermomechanical characteristics of com-
posite materials this leads to unreasonably high time costs
and memory consumption and what is more undesirable
to a loss of accuracy in the case of performing calculations
for boundary value technological problems due to inevit-
ably rough estimation of the derivative while doing time
discretization. Therefore in practice it is more appropriate
to use simpler expression such as (12).
Let us define the class of composite materials, for which

the “energy” relations (12) give an accurate description,
i.e., are coincide with (23, 25). To this end, we represent
both types of equations in the component-wise form:
The energy-type relations

σe
ij tð Þ ¼ C 1ð Þ

ijkl tð Þ εkl tð Þ−εT1kl tð Þ� �þ
þC 2ð Þ

ijkl tð Þ
ZN tð Þ

0

εkl tð Þ−εokl τð Þ−εT2kl tð Þ þ εT2kl τð Þ� �
dN τð Þ:

ð26Þ
The stiffness-type relations:

σsij tð Þ ¼ Cijkl N tð Þ;T tð Þð Þ εkl tð Þ−εTkl N tð Þ;T tð Þð Þ� �
−

−
ZN tð Þ

0

εkl τð Þ−εTkl N τð Þ;T τð Þð Þ� �
C′

Nijkl
N τð Þ;T τð Þð ÞdN τð Þ:

ð27Þ
We need to determine the type of the function Сijkl, εkl,

at which σeij ¼ σsij . To simplify the transformations we

assume that in the glass transition range the dependence
of the components of elasticity tensors on temperature is
negligible compared to a change of stiffness caused by
transition of the matrix into a glassy state. To specify the
type of function Сijkl providing a change from (27) to (26),
it is necessary to equate the right–hand sides of these
expressions without taking into account the thermal
deformation (according to the problem formulation the
contributions of thermal deformation are similar in both
expressions and are deleted on their equating).
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С 1ð Þ
ijklεkl tð Þ þ С 2ð Þ

ijklεkl tð ÞN tð Þ−С 2ð Þ
ijkl

ZN tð Þ

0

εkl τð ÞdN τð Þ¼

¼ Cijkl N tð Þ;T tð Þð Þεkl tð Þ−
ZN tð Þ

0

εkl τð ÞC′
Nijkl

N τð Þ;T τð Þð ÞdN τð Þ

Upon differentiating with respect to time we obtain

С 1ð Þ
ijkl _εkl þ С 2ð Þ

ijkl _εklN þ εkl _N
� �

−С 2ð Þ
ijklεkl

_N¼
¼ _Cijklεkl þ Cijkl _εkl−εkl _Cijkl

ð28Þ
The arguments are dropped out to shorten the expres-

sion. Equation (28) is derived bearing in mind that in

the glass transition range Ĉ
′

N >> Ĉ
′

T and therefore Ĉ
′

N≅
dĈ=dt. After combing like terms expression (28) reduces to

Cijkl ¼ C 1ð Þ
ijkl þ C 2ð Þ

ijklN ð29Þ

Thus, to ensure that in the description of behavior
of composite material undergoing glass transition the
energy-type relations coincide with the stiffness-type
relations, the dependence of the components of the
elastic tensor on the degree of material conversion
should obey the law (29)
In order to obtain the functional dependence of the

components of free deformation tensor εTkl N ;Tð Þ, which
will provide identity of (26) with (27), it is necessary to
equate the right-hand sides of these expressions taking
into account the fact that for the specified type of elastic
tensor (29) the sum of terms, containing effective strains
on each side of the equality sign, are identical.

−C 1ð Þ
ijkl ε

T1
kl tð Þ ¼ C 2ð Þ

ijkl

ZN tð Þ

0

εT2kl tð Þ−εT2kl τð Þ� �
dN τð Þ ¼

¼ − C 1ð Þ
ijkl þ C 2ð Þ

ijklN tð Þ
h i

εTkl tð Þ þ C 2ð Þ
ijkl

ZN tð Þ

0

εTkl τð ÞdN τð Þ

In view of the accepted assumptions, differentiating the
above expression with respect to time and collecting like
terms leads to a system of linear first–order differential
equations with variables separated with respect to εTke:

_εTkl C 1ð Þ
ijkl þ C 2ð Þ

ijklN
h i

¼ C 1ð Þ
ijkl _ε

T1
kl þ C 2ð Þ

ijkl _ε
T2
kl N ð30Þ

For transversally isotropic and orthotropic composites
the system (30) can be explicitly solved for _εTkl≡dε

T
kl=dt .

In this case, _εf g ¼ C½ �−1 _εT
� �

, where [C] is a 3 × 3 square

matrix, Cij ¼ C 1ð Þ
ijkl þ C 2ð Þ

ijklN ; _εT
� �

is a column vector,

such that _εTi ¼ C 1ð Þ
iijj _ε

T1
jj þ C 2ð Þ

iijj _ε
T2
jj ; _ε0i ¼ _ε0ii. Denoting the

inverse of the matrix [C] by C
� �

we obtain an explicit
expression for components of the simple deformation
tensor

εTii ¼
Z t
0

Cij _ε
T
j dt ð31Þ

where

C 11 ¼ C22ð Þ2− C23ð Þ2� �
=Δ; C12 ¼ C12 C23−C22ð Þ½ �=Δ;

C23 ¼ C12ð Þ2−C11C33
� �

=Δ; C 22 ¼ C11C22− C12ð Þ2� �
=Δ;

Δ ¼ 2 C23ð Þ2 C12−C22ð Þ þ C33 C22ð Þ2− C12ð Þ2� �
:

Expression (31) describes the dependence of temperature
deformation on time providing going from the “stiffness
growth” relations to “the energy” relations and back.
Expressions (29) (31) allow us to single out the class of

composites, for which both approaches give the same
results. The most demonstrative example is the composite
containing no filling material. In other materials such
similarities might be the result of the random combination
of matrix and fiber properties. Therefore it is essential to
estimate the errors that occur in the calculations due to
the application of simplified relations (12). To this end,
we carry out a comparative analysis of the “energy” and
“stiffness” models with the aim of averaging the thermo-
mchanical properties of the composite material based on
the Voigt and Reuss methods.
We assume that the matrix and fiber moduli, as well

as their thermal expansion coefficients αM, αa are not
temperature dependent. The loading sequence includes
the following stages: cooling of the clamped specimen
from T > Tg1 to Tk >Tg2; unloading at T =Tk; re-clamping
and heating up to TH. According to (26), (27), the stress in
the cooled specimen will change by the law (index “g”
denotes glass transition, index “e” refers to stresses
calculated by the “energy” model (26), :” s” – to stresses
calculated by the “stiffness” model (27)):

σeg Tð Þ ¼ −E 1ð ÞεT2−E 2ð Þ εT2 Tð ÞN Tð Þ−
ZN tð Þ

0

εT2 T τð Þð ÞdN τð Þ

2
64

3
75;

ð32Þ

σsg Tð Þ ¼ −E N Tð Þð ÞεT Tð Þ þ
ZN tð Þ

0

εT T τð Þð ÞE′
N N τð Þð ÞdN τð Þ:

ð33Þ

Unloading and subsequent heating of the material to the
initial temperature are accompanied by the generation of
stresses (index “h” denotes heating):
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σeh Tð Þ ¼ −E 1ð ÞεT1 Tð Þ−E 2ð Þ εT2 Tð ÞN þ
ZN tð Þ

0

εT2 T τð Þð ÞdN τð Þ

2
64

3
75þ

þ E 1ð Þ þ E 2ð ÞN Tð Þ� �
ε Tkð Þ;

ð34Þ

σsh Tð Þ ¼ E Tð Þ εs Tkð Þ−εT Tð Þ� �þ ZN tð Þ

0

ε0 T τð Þð ÞE′
N T τð Þð ÞdN τð Þ;

ð35Þ

where ε(Tk), is the strain in the cooled specimen after
unloading: ε(Tk) = − σeg(Tk)/(E

(1) + E(2)); εs(Tk) = − σsg(Tk)/
E(Tk). The values of the effective thermomechanical charac-
teristics in (32)–(35) depend on the method of averaging
the properties of the composite.
Consider the process of specimen deformation along the

fiber length, the computational scheme of which is shown
in Fig. 2a. In this case σ ¼ σaψ þ σMψ ; εa ¼ εM ¼ ε .
Index “M” refers to the matrix and “a” – to the
reinforcement. The effective parameters are determined
from the following formulas

ε Nð Þ ¼ EMψ þ Eaψ;

εT ¼
ZT
TH

ψαMEM þ ψEaαað Þ EMψ þ Eaψð Þ−1dt;

E 1ð Þ ¼ E 1ð Þ
M ψ þ Eaψ; E 2ð Þ ¼ E 2ð Þ

M ψ;

εT1 ¼
ZT
TH

E 1ð Þ
M αMψ þ Eaαaψ

h i
E 1ð Þ
M ψ þ Eaψ

h i−1
dT ;

εT2 ¼
ZT
TH

αMdT ;

Here E 1ð Þ
M is the equilibrium modulus of the binding

agent; E 2ð Þ
M ¼ Eg

M−E
1ð Þ
M ; Ea; αa; EM;αM are the moduli and

liner coefficients of thermal expansion of reinforcing

and binding materials, respectively; EM ¼ E 1ð Þ
M þ E 2ð Þ

M N ;

ψ ¼ 1−ψ.
It turns out that upon substituting the “stiffness” and

“energy” relations into (32)–(35) we obtain the same
values of stresses:

σeg
== Tð Þ ¼ σ sg

== Tð Þ ¼ −
ZT tð Þ

TH

E 1ð Þ
M þ E 2ð Þ

M N τð ÞψαM þ Eaψαa
h i

dT τð Þ;

σeh
== Tð Þ ¼ σ sh

== Tð Þ ¼ ε Tkð Þ ψEM þ ψEa½ � þ σeg== Tð Þ;
ð36Þ

where ε Tkð Þ ¼ −σeg Tkð Þ ψ E 1ð Þ
M þ E 2ð Þ

M

	 

þ ψEa

	 
−1
:

Exact effective stresses are calculated by solving the
problem of deformation behavior of a composite, in
which the matrix and fiber deform simultaneously. The
system of equations for this case includes the constitu-
tive equations, equilibrium equations and equations of
deformation compatibility:

σM Tð Þ ¼ EM Tð ÞεTM Tð Þ−E 2ð Þ
M

ZN tð Þ

0

εTM τð ÞdN τð Þ; σa Tð Þ ¼ Eaε
T
a Tð Þ;

9>=
>;

ð37Þ

σ Tð Þ ¼ σa Tð Þψ þ σM Tð Þψ ; ε Tð Þ ¼ εa Tð Þ ¼ εM Tð Þ:
ð38Þ

Solving Eqs. (37) and (38) taking into account the
deformation conditions and temperature variation, we
obtain the effective stresses that agree with (36). Thus,
for the specified computational scheme both the ‘energy”
and “stiffness” relations yield an exact solution.
No such agreement is observed in the case of deform-

ation across the fiber (Reuss’s average, Fig. 2b). In this
case, the effective characteristics of the material are
found by the following formulas:

a b

Fig. 2 Schematic representation of composite deformation: a- along the fiber, b – across the fiber
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E Nð Þ ¼ EMEa Eaψ þ EMψ½ �−1 ;

εT ¼
ZT
TH

αMψ þ αaψð ÞdT ;

E 1ð Þ ¼ E 1ð Þ
M Ea Eaψ þ E 1ð Þ

M ψ
h i−1

;

E 2ð Þ ¼ E 1ð Þ
M þ E 2ð Þ

M

h i
Ea Eaψ þ E 1ð Þ

M þ E 2ð Þ
M

	 
h i−1
−E 1ð Þ;

εT1 ¼ εT2 ¼
ZT
TH

αMψ þ αaψð ÞdT ; EM ¼E 1ð Þ
M þ E 2ð Þ

M N :

Substituting these expressions into (32)–(35), we get

σeg⊥ Tð Þ ¼ −
ZT
TH

E 1ð Þ þ E 2ð ÞN Tð Þ
h i

αMψ þ αaψ½ �dT ;

σeh
⊥ Tð Þ ¼ E 1ð Þ þ E 2ð ÞN

	 

εe Tkð Þ þ σeg Tð Þ;

)

ð39Þ

σsg⊥ Tð Þ ¼ −
ZT
TH

EMEa Eaψ þ EMψ½ �−1dT ; σsh⊥ Tð Þ

¼ EMEa Eaψ þ EMψ½ �−1εs Tkð Þ þ σ sg Tð Þ;

)
ð40Þ

where εe(Tk) = − σeg(Tk)[E
(1) + E(2)]− 1; εs Tkð Þ ¼ −σsg Tkð Þ

ψ E 1ð Þ
M þ E 2ð Þ

M

	 

þ ψEa

h i−1
.

An exact solution is found by solving the system (36)
bearing in mind that

σ Tð Þ ¼ σa Tð Þ ¼ σM Tð Þ; ε Tð Þ
¼ εa Tð Þψ þ εM Tð Þψ ð41Þ

Upon substituting (41) into (36) and making some trans-
formations we obtain the expressions for stresses, which
agree with the “stiffness” expressions (40). Hence, the “stiff-
ness” relations describe accurately the macrobehavior of the
composite material for simple variants of averaging the
composite properties. The “energy” equations lead to an
error in the stress estimates in the case of transverse de-
formation. Figure 3 presents the reduced stress curves ob-
tained from numerical calculations using (36), (39), (40).
Curves 1,2 describe variation of stresses in the speci-

men stretched under tensile loads along the fiber length.
The characteristics of tested composite material roughly
agree with the characteristics of anisotropic fiber - rein-
forced organoplastic material reinforced with anisotropic
fibers the transverse modulus of which is comparable
with the matrix modulus. Curves 3–5 for stresses in
transversely loaded material at different values of ψ are
shown in Fig. 3. The dynamics of the relative error Δσ is
presented in Fig. 4.
It is seen that the maximum error is observed in the

glass transition interval. Its value increases with the

growth of ψ and reaches its maximum value at ψ = 0,96.
In the temperature range corresponding to the operating
conditions of the end product (lower than Tg2), the
calculation error does not exceed 10%. For polymer
materials reinforced with isotropic fibers (glass-, boron-
plastics, etc.) with EM 2ð Þ << 1 the maximum error in the
estimates of transverse stresses is as high as 3% (Fig. 4b,
curve 1). This suggests that the “energy” relations can be
readily used for description of the behavior of composite
materials in the examined range of material properties

Fig. 3 Reduced stresses in composites: 1,2 – longitudinal stresses: E 1ð Þ
m

= 10−4, E 2ð Þ
m = 10−2; ψ = 0,1 (1), 0,5 (2); 3–5 – transverse stresses: E 1ð Þ

m =

0,01, E 2ð Þ
m = 1; ψ = 0,1 (3), 0,5 (4), 0,7 (5). Solid lines - calculations using

(39); dash lines – calculations using (40). The notation used in Fig. 3

and 4: σ ¼ σ= αaEaθkð Þ; E
ið Þ
M ¼ E ið Þ

M =Ea; αM ¼ αM=αa;

θk ¼ TH−Tk ; θg ¼ TH−Tg;Δσ ¼ 2jσ e Tð Þ−σ s Tð Þkσe T kð Þ−σs T kð Þj−1;
T ¼ TH−Tð Þ =θk

a b

Fig. 4 Errors of stress calculation by (39) as a function of temperature
(a) (notation is similar to that used in Fig. 3) and (b) of volume fraction

of fibers. 1 – Ε 1ð Þ
Μ = 0,001, Ε 2ð Þ

Μ = 1; 2 – Ε 1ð Þ
Μ = 10−4, Ε 2ð Þ

Μ = 10−2; 1′,2′ –
the same relations under heating conditions
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reducing thereby the computational costs related with
the evaluation of unknown thermomechanical constants.

Results and discussion
Predicting of the effective material functions and
constants for fiber-reinforced composite based on the
results of numerical experiments
One of the challenging problems in the mechanics of
composite materials is the estimation of their mechan-
ical properties based on the properties of their compo-
nents. In our case it is necessary to determine two sets
of parameters, i.e., the parameters corresponding to the

high-elastic state of the binder - C 1ð Þ
ijkl ; α

1ð Þ
ii , and the pa-

rameters corresponding to the glassy state - Cg
ijkl ; α

g
ii.

Consider the unlimited, continuously reinforce medium
whose structure is formed by straightened and equally
oriented cylindrical fibers having equal circular cross
sections. The space between the fibers is filled with the
binding medium – the matrix whose characteristics differ
from the characteristics of the fiber.
The emphasis is on the prediction of the effective prop-

erties of the idealized homogeneous medium based on the
properties of the phases and their geometrical characteris-
tics, using for this purpose the averaging procedure.
To this end, we pick out from the medium a unit sym-

metry cell (we will consider a hexagonal ordering of
fibers) – an elementary unit (Fig. 5). We assume that
within the boundaries of this unit cell the gradient of the
external force field changes insignificantly.
The volume fraction of fibers in the composite is defined

by the radius of inclusion: . Hence R

¼
ffiffiffiffiffiffiffiffiffiffi
ψ 2ab

π

q
. Since we consider a hexagonal cell, we have

a ¼ bffiffi
3

p

The general formulation of the problem of the linear
elasticity theory is reduced to the following system of
equations:
equilibrium equation

σ�ij;j xð Þ ¼ 0; ð42Þ

geometrical relations

ε�ij xð Þ ¼ 1
2

u�i;j xð Þ þ u�j;i xð Þ� �
; ð43Þ

physical relations for polymer matrix

σ�ij xð Þ ¼ Bm−
2
3
Gm


 �
θ�δij−2Gmε�kl−3BmεmT δij; ð44Þ

- physical relations for fiber

σ�ij xð Þ ¼ Ca
ijkl Tð Þ εkl−εaTkl Tð Þ� �

; ð45Þ

-
Here σ*ij(x), ε*ij(x), are the components of the strain

and stress tensors at the structural level. The elastic
moduli of the matrix Gm, Bm are taken to be G1, B1 in
the high-elastic state and Gg, Bg - in the glassy state.
The boundary conditions depend on what components

of the elasticity and temperature deformation tensors we
need to determine.
The effective properties describe and specify the de-

formation of the composite material at the macroscopic
level when the composite is considered to be a homoge-
neous material. The stress state of the elementary
macro-units is characterized by the averaged stress ten-
sor σij, and the strain state – by the averaged strain ten-
sor εij, which in the case of their slow variation from
point to point and the presence of rigid bonds between
the components of the composite is determined by the
stress-strain state in the elements of the composite
structure .

σ ij ¼ 1
V

Z
V

σ�
ij xð Þdx; εij ¼ 1

V

Z
V

ε�ij xð Þdx: ð46Þ

The generalized Hook law for macroscopic quantities
can be written as

σ ij ¼ Cijmnεmn ð47Þ

where Cijmn is the tensor of the effective elasticity
moduli.
Consider a composite material consisting of the iso-

tropic matrix and transversely-isotropic fibers. The com-
posite is assumed to be transversely isotropic such that
the isotropy axis coincides with the fiber direction (z-
axis (1)) and the x(3)-y(2)-plane is referred to as the
isotropy plane.

Fig. 5 Periodicity cell and accepted coordinate system:1- matrix of
the composite, 2- filler (fiber)
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A transversely isotropic (monotropic) material Cijkl has
five independent components

Cijkl ¼

C1111 C1122 C1122 0 0 0
C2222 C2233 0 0 0

C2222 0 0 0
1
2

C2222−C2233ð Þ 0 0

C6666 0
C6666

2
66666664

3
77777775

ð48Þ
The physical equations of elasticity for transversely

isotropic materials are written as

ε11 ¼ 1
E1

σ11−
ν12
E1

σ22−
ν12
E1

σ33;

ε22 ¼ −
ν12
E1

σ11 þ 1
E2

σ22−
ν23
E2

σ33;

ε33 ¼ −
ν12
E1

σ11−
ν23
E2

σ22 þ 1
E2

σ33;

ε12 ¼ 1
2G12

σ12;

ε13 ¼ 1
2G12

σ13;

ε23 ¼ 1þ ν23
E2

σ23

ð49Þ

where E1, E2, ν12, ν23, G12 are five independent effective
characteristics of the material.
These characteristic can be found by solving four

boundary value problems of the elasticity theory: uni-
axial tension along the fiber length, transverse deform-
ation in the plane normal to the fiber direction, shear
deformation in the direction of the fiber axis and free
temperature deformation.
Under conditions of uniaxial stretching in the fiber

axial direction we assume that the periodicity conditions
correspond to the following conditions at the cell
boundaries:

u�1
��
z¼0 ¼ u�2

��
y¼0

¼ u�3
��
x¼0

¼ 0; u�1
��
z¼c

¼ U0
1;

u�2
��
y¼b

¼ const ¼ U2; u
�
3

��
x¼a

¼ const ¼ U3:

The value of U0
1 is specified, and U2 and U3 are the

unknown parameters found by solving the problem. The

composite deformation in the longitudinal direction is
constant and equal to ε11 ¼ ε ¼ U0

1=c. From the solution
of the problem we determine the average longitudinal
stresses σ11 and average transverse strains ε22 =U2/b and
ε33 =U3/a.

Table 1 Elastic characteristics of the composite components

E1 E2 ν12 ν23 G12

Glass fiber 9,32E + 10 - 0,24 - -

Boron fiber 3,70E + 11 - 0,15 - -

Carbon fiber 2,26E + 11 1,29E + 10 0,31 0,2 6,00E + 10

Organic fiber (T > Tg) 6,10E + 10 1,60E + 09 0,27 0,27 1,30E + 09

Organic fiber(T < Tg) 1,21E + 11 3,35E + 09 0,27 0,27 2,60E + 09

Table 2 Coefficient of linear thermal expansion of fibers

α1,K
−1 α2,K

−1

Glass fiber 5E-6 5E-6

Carbon fiber −5E-7 2.7E-5

Organic fiber −6,3E-6 8,5E-5

Fig. 6 Finite element discretization of the symmetry cell
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The effective characteristics are defined by the follow-
ing relations:

E1 ¼ σ11
ε

; ν12 ¼ −
ε22
ε
; ν13 ¼ −

ε33
ε
:

For transverse deformations the boundary conditions
are written as

u�1
��
z¼0 ¼ u�2

��
y¼0

¼ u�3
��
x¼0

¼ 0; u�1
��
z¼c

¼ U1;

u�2
��
y¼b

¼ const ¼ U0
2; u

�
3

��
x¼a

¼ const ¼ U3:

The value of U0
2 is specified, and U1 and U3 are the

unknown parameters found by solving the problem. The
composite deformation in the longitudinal direction is
constant and equal to ε22 ¼ U0

2=b. From the solution of
the problem we determine the average transverse normal
stresses σ22 and average strains ε11 =U1/c and ε33 =U3/a.
The effective characteristics are defined by the follow-

ing relations:

E2 ¼ σ22
ε22

; ν23 ¼ −
ε33
ε22

; ν21 ¼ −
ε11
ε22

:

For simple longitudinal shear we specify the following
boundary conditions:

u�1
��
z¼0 ¼ u�2

��
z¼0 ¼ 0; u�1

��
z¼c ¼ U0

1; u
�
2

��
y¼b ¼ const ¼ U2;

u�3
��
x¼0 ¼ 0:u�3

��
x¼a ¼ const ¼ U3:

and also the condition of equal displacements of opposite
points on the front and rear faces of the cell

u�i x; y; cð Þ ¼ u�i x; y; 0ð Þ:

The value of U0
1 is specified, and U2 and U3 are the

unknown parameters found by solving the problem. The
shear strain of the composite is equal to ε12 ¼ U0

1=b .
From the solution of the problem we determine the
average tangential stresses σ11 and average transverse

a b

Fig. 7 Plots of longitudinal modulus of the composite against volume fraction of the fiber in (a) the glassy state and (b) in the high elastic state
of the matrix

a b

Fig. 8 Plots of transverse modulus of the composite against volume fraction of the fiber in (a) the glassy state and (b) in the high elastic state of
the matrix
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strains ε22 =U2/b and ε33 =U3/a. The effective shear
modulus is defined as

G12 ¼ σ12
ε12

;

To investigate thermal loading we need to set the
temperature deformation εmTij ¼ αmΔTδij for the polymer

matrix and εaTij ¼ αaijΔT for the reinforcing fiber. Bound-

ary conditions are given as

u�1
��
z¼0 ¼ u�2

��
y¼0 ¼ u�3

��
x¼0 ¼ 0;u�1

��
z¼c ¼ U1;u

�
2

��
y¼b

¼ const ¼ U2; u
�
3

��
x¼a ¼ const ¼ U3:

The quantities U1, U2 and U3 are the unknown param-
eters found by solving the problem. The average strains
ε11 =U1/a ε22 =U2/b and ε33 =U3/c are found by solving
the problem The effective coefficients of expansion are
derived from

αii ¼ εii
ΔT ;

The stated problems are solved by the finite element
method using the ANSYS package. For this purpose the
symmetry cell is divided into finite elements It is also
necessary to specify the properties of the composite
(Tables 1 and 2), boundary conditions and additional
conditions of symmetry.
For numerical simulation we used the finite element

mesh shown in Fig. 6. We have calculated the thermo-
mechanical characteristics of the composites (glass-,
boron-, carbon- and organic plastics) and plotted their
properties against the volume fraction of the fiber in the
composite (Figs. 7, 8 and 9). The mechanical properties
of the binder-containing composite in the glassy state
are shown on the left-hand graph and in the high-elastic
state - on the right-hand graph.
From the comparison of the figures it is evident that

the character of the dependence of all parameters on the

a b

Fig. 9 Plots of shear modulus of the composite against volume fraction of the fiber in (a) the glassy state and (b) in the high elastic state of
the matrix

a b

Fig. 10 Plots of thermal expansion coefficients of organoplastic against volume fraction of the fiber in (a) the glassy state and (b) in the high
elastic state of the matrix
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coefficient of the volume fraction of fiber remains prac-
tically unchanged. Softening of the binding agent in the
high-elastic state has negligible effect on the longitudinal
modulus of the composite (Fig. 7), but leads to a consid-
erable decrease of the transverse and shear moduli, as
well as to weakening of the influence of fiber properties
on these quantities (Figs. 8 and 9).
Figures 10, 11 and 12 display the results of calcula-

tion of thermal expansion coefficients for organo-,
carbon-, and glass-fiber plastics in the glassy and
high-elastic state.
To sum up, we can say that the proposed two ap-

proaches can be used to construct the constitutive rela-
tions in the form of (12) for composites undergoing
glass transition. The effective characteristics of the ex-
amined composites in the steady states (high-elastic and
glassy) can be conveniently predicted based on the
known properties of the matrix and fiber.

Conclusion

� The model of polymer behavior at glass transition
recently developed by the authors was generalized
to the case of fiber-reinforced polymer matrix
composites using two approaches: one is base on
the concept of free specific energy, the other –
on the growth of marix stiffness. The analysis has
shown that for homogeneous materials these two
approaches are of equal worth, whereas for composite
materials they give different results under deformation
in the transverse direction.

� The stiffness growth approach is more accurate,
because it takes into account the anisotropy of
the influence of the degree of conversion on the
composite stiffness. However its application involves
large computational costs. Moreover, it is highly
sensitive to the experimental data errors.

a
b

Fig. 11 Plots of thermal expansion coefficients of carbonplastic against volume fraction of the fiber in (a) the glassy state and (b) in the high
elastic state of the matrix

a b

Fig. 12 Plots of thermal expansion coefficients of glass-fiber plastic against volume fraction of the fiber in (a) the glassy state and (b) in the high
elastic state of the matrix
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� For composites under longitudinal deformation
(the load is applied along the fiber axis) the two
approaches agree fairly well. In the case of
transverse deformation (the load is applied
transverse to the fiber axis) the maximal difference
is observed in the glass transition temperature range.
In the range of temperatures corresponding to
operating conditions of the end product this
difference is inessential.

� Using the finite element method and averaging
technique a numerical algorithm for calculating the
thermoelastic constants of composites in the glassy
and high-elastic states has been developed. The
thermomechanical properties of the fiber and
matrix and volume fraction of fibers are used
as the input data.

� The longitudinal, transverse and shear moduli of
composites containing different types of fibers have
been plotted against the volume fraction of the fiber
in the case when the matrix is in the glassy or high-
elastic state. It has been shown that softening of the
matrix has an insignificant effect on the longitudinal
modulus of a composite but leads to a considerable
decrease of the transverse and shear moduli.

� The coefficients of thermal expansion of composites
containing different types of fibers have been plotted
against the volume fraction of the fiber in the case
when the matrix is in the glassy or high-elastic state.
It has been shown that the coefficient of thermal
expansion in the transverse direction is much higher
than the coefficient of thermal expansion in the
longitudinal direction, especially when the composite
is in the high-elastic state.
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