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Abstract

Background: Machining using vertical CNC end mill is popular in the modern material removal industries because
of its ability to remove the material at a fast rate with a reasonably good surface quality.

Methods: In this work, the influence of important common machining process variables like feed, cutting speed
and axial depth of cut on the output parameters such as surface roughness and amplitude of tool vibration levels
in Al-6061 workpieces has been studied. With the use of experimental result analysis and mathematical modelling,
correlations between the cutting process conditions and process outputs are studied in detail. The cutting
experiments are planned with response surface methodology (RSM) using Box-Behnken design (BBD).

Results: This work proposes a multi-objective optimization approach based on genetic algorithms using
experimental data so as to simultaneously minimize the tool vibration amplitudes and work-piece surface
roughness. The optimum combination of process variable is further verified by the radial basis neural network
model.

Conclusions: Finally, based on the multi-objective optimization approach and neural network models an interactive
platform is developed to obtain the correct combination of process parameters.

Keywords: Al-6061 work-piece, Box-Behnken design, Multi-objective optimization, Neural network, Surface
roughness, Tool vibration amplitudes

Background
For the metal-working industry, a continuous reduction
in manufacturing cost is desirable. An important issue
related to reduce overall cost consists of the removal of
undesirable or excess work piece material during the
machining process. Among different types of material
removal operations, end-milling is most important com-
mon milling operation due to its capability of producing
complex geometric surfaces with reasonable accuracy
and surface finish. Over the last two decades, several
works focused on the optimum selection of machining
parameters based on various criteria such as using basic
mathematical models. Some contemporary literature is
first presented. Brito et al. (2014) developed a robust
parameter design for the process parameters using the

multi-objective methods. The numerical results are vali-
dated with the experimental cutting tests. Mathivanan
et al. (2016) studied the influence of cutting parameters
on milling of the composite materials. A CNC end mill-
ing was used to machine the composite laminates at
various combinations of speeds and depth of cuts.
Numan durakbasa et al. (2015) presented the various
end milling process parameters as well as the coatings
on the surface quality of the machined parts of AISI
H13 hot work steel. Some researchers (eg., Hocheng
et al. (1997), Arokiadass (2012) and Surinder (2015))
investigated the machining characteristics of an alumin-
ium based composite alloy for the end-milling process.
Experiments were conducted based on the central com-
posite design and Analysis of Variance (ANOVA) was
used to build the mathematical model. Zhang et al.
(2016) implemented a systematic optimization approach
to obtain the pareto-optimal values of cutting process
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parameters. Dikshit et al. (2014a, 2014b) studied the
cutting process parameters in dry machining of alumin-
ium alloys. Response surface methodology was planned to
carry out the experiments and further genetic algorithms
were implemented to obtain the optimal parameters such
as the cutting speed, feed per tooth, axial and radial depth
of cut. Karkalos et al. (2016) focused on the machining of
Titanium alloy with the peripheral down milling process
and further optimal control studies were implemented to
minimize the surface roughness. Ratnam et al. (2016)
studied the turn-milling process in tangential and orthog-
onal directions to minimize the surface roughness of ex-
truded brass material. Several recent works focussed on
the optimal machining parameters for multi-pass milling
operations by considering the statistical and artificial intel-
ligent techniques (Wang et al. 2005; Sukumar et al. 2014;
Venkata Rao and Pawar 2010; Das et al. 2016; Ren et al.
2016). The efficiency of a neural network model was esti-
mated by conducting the numerical simulations and ex-
periments. Several studies had been focussed on the
optimization of important cutting process parameters
using intelligent optimization techniques like genetic algo-
rithms and radial basis neural networks (Briceno et al.
2002; Mounayri et al. 2010; Mounayri et al. 2005). Using,
different neural network models and optimization algo-
rithms the impact of the surface roughness on the process
parameters are extensively studied (Palanisamy et al.
2007; Palanisamy and Kalidass 2014; Zain et al. 2011;
Saffar and Razfar 2010). Khorasani et al. (2016) studied
the effects of cutting parameters and cutting fluid pressure
intensity on the surface roughness of milled parts. The im-
portant parameters were modelled and analysed using
both the multi-layer perceptron and radial basis neural
networks.
In spite of above works, very few works are found in

literature dealing with the optimal process parameter
selection based on simultaneously minimization of tool
vibration amplitudes during cutting as well as surface
roughness average values of the workpiece. The milling
experiments are conducted on the CNC vertical milling
machining centre by considering three levels of feed rate,
spindle speed and axial depth of cut. Using the response
surface methodology with Box-Behnken design, a math-
ematical model is developed to predict the surface
roughness and amplitude of tool vibration levels in
terms of the cutting process variables. Using the experi-
mental data, neural network model is created to
approximate the relationship between the three process
parameters and two output variables. Furthermore, the
equations obtained from response surface methodology
are employed as function-estimators for GA-based
optimization module, which attempts to minimize sim-
ultaneously the tool vibration amplitude and average
roughness. The resulting optimum process parameters

are reported and discussions are made. Thus, data
generation, interaction of responses, implementation of
multi-objective genetic algorithms, parallel radial basis
neural network modelling for comparison of results is
explained one after the other.

Methods
Experimental work is conducted on a CNC milling cen-
ter (MAXMILL-make MTAB) employing user defined
spindle speeds, depth of cut and feed motions. A 12 mm
diameter HSS tool with four cutting flutes with 50 mm
overhang and a spindle speed of 4000 rpm is employed
through-out all the experiments. End milling operations
are carried out with full percentage of radial immersion
is conducted on the Al6061 work pieces. The chemical
composition of this alloy is: 0.3% Cu, 0.04% Mn,
0.85% Mg, 0.04% Ti, 0.5% Si, 0.2% Cr, 0.5% Fe, 0.25%
Zn, and rest is aluminium. All the specimens were taken
in the form of blocks of sizes 100 × 80 × 10 mm. At the
specified spindle speeds and depth of cut, the vibration
amplitudes are recorded by the following instruments:
an accelerometer (PG 109 M0, frequency range 1 to
10,000 Hz), a 4-channel digital oscilloscope (model-DPO
43034) with charge amplifier (Model: CA 201 A0). The
accelerometer is placed at the housing of the spindle and
the corresponding data are recorded in the oscilloscope.
Figure 1 shows the experimental set-up employed in
present work on the machining center.
In order to assess the quality of the product, surface

roughness is an important measure. It greatly influences
the performance of mechanical parts as well as produc-
tion cost. Proper selection of cutting parameters pro-
duces a good surface finish. The roughness of the
machined surfaces was examined by the Talysurf instru-
ment as shown in the Fig. 2.
Box-Behnken design (BBD) of response surface meth-

odology (RSM) is used to get the fifteen sets experi-
ments with a mathematical model. This method
generally requires fewer experiments compared to the
rotational central composite design (RCCD) of RSM.
The three machining parameters are selected to study
the feed (mm/min), speed (rpm) and axial depth of cut
(b). These three machining parameters are selected
based on the preliminary trial tests. Table 1 shows the
machining parameters and their levels.
It is generally, sufficient to fit a quadratic model and

contains the linear terms, squared terms and products of
factors. Table 2 shows the experimental outcomes of the
input response parameters.

Response surface modeling
The RSM is a collection of statistical and mathematical
methods for the modeling and optimization of the
engineering science problems. These method is utilized
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to develop a relation between input parameters and
performance characteristics. During modeling of manu-
facturing processes using RSM, sufficient data is col-
lected through design of experiment. In general, a
second-order regression model is mostly developed
because first-order models often give some lack-of-fit.
All the input process parameters are assumed to be
measurable quantity during modeling and the corre-
sponding responses can be expressed as follows:

y ¼ f x1; x2; ::::::; xp
� � ð1Þ

where x1, x2, x3, …, xp are input process parameters
and y is response. During experimentation, it is assumed
that all the input parameters are controllable and have
negligible errors. It is also required to find a suitable
approximation between input variables and responses.
The second-order RSM model used for modeling of the
experimental data is given below:

y ¼ b0 þ
Xk
i¼1

bixi þ
Xk
i¼1

biix
2
i þ

X
i

X
j

bijxixj ð2Þ

where b0 is constant and bi,bii, bij ……, are regression
coefficients determined by least squares method. The
second-order mathematical model for amplitude of tool
vibration level (A) and surface roughness (Ra) has been
developed from the experimental data using Minitab
software. The second order mathematical model for
predicting the A and Ra are given as:

Amplitude Að Þ ¼ ð−0:064416−0:002188� f
þ0:000296� N−0:556870� b
þ0:000127� f 2 þ 0:476204� b2

−0:000002� f � N−0:007042� f
�bþ 0:000124� N � bÞ

ð3Þ

Surface roughness Rað Þ ¼ ð−4:31386−0:00399� f
þ0:00554� N−4:83889� b
þ0:00004� f 2−0:95278� b2

−0:00003� f � N þ 0:07750
�f � bþ 0:00083� N � bÞ

ð4Þ

The coefficients in the above expressions signifies the
weightage factorial values on the output responses. The
positive and negative signs of the coefficients reflect the
respective proportionality.

Fig. 1 Experimental set-up employed for in-situ vibration measurements

Fig. 2 Talysurf instrument for surface roughness used

Table 1 Machining parameters and their levels

S. No Factor Low High

1 Spindle speed (rpm) 1800 3000

2 Feed rate (mm/min) 20 60

3 Axial depth of cut(mm) 0.2 0.8
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Multi-objective optimization
In order to obtain the optimal solutions for different de-
sign problems with various input data sets optimization
methods are needed severely. In single optimization
problem, there is only one output criterion and such
work has been studied over the past 50 years. When
there is more than one objective, a different treatment is
required. The multi-objective problems ascend in the
complex real world industries like machining, design,
transportation industries etc. It is seen that, all the im-
portant real world practical problems involving multiple
criteria with several constraints are drawing much atten-
tion towards the multi-objective optimization. These
problems could be effectively solved with less computa-
tional effort and high accuracy. In multi-objective
optimization problems, genetic algorithms approach is a
better technique compared to other methods and has
received considerable attention by the researchers. GA is
based on the principle of survival for the fittest. In this
method, initially a population of strings is selected ran-
domly. These are encoded in binary digits and it is trad-
itionally used to signify the chromosomes using with
zeros and ones. Further, the fitness value (maximization
or minimization problems) is computed. Further to
create a new population, operations like reproduction,
crossover and mutation were applied consecutively.
Once the new population is generated it is further evalu-
ated and tested for the conformability.
The aim of this study is to minimize the amplitude of

vibrations and at the same time minimize the surface
roughness (Ra). Here, the response parameters (A and
Ra) are non-linear functions of feed rate (f ), spindle

speed (N), and axial depth of cut (b). The objective func-
tion is defined as follows:

Minimize f Xð Þ; g Xð Þf g ð5Þ

Subjected to variable bounds

1800≤N≤3000 ð6Þ

20≤f ≤60 ð7Þ

0:2≤b≤0:8 ð8Þ

With X = [N, f, b] T and N, f and b represent the speed,
feed and axial depth of cut. The function of f(X) and
g(X) represents the amplitude of vibration and surface
roughness, which are unknown and to be fitted from the
experimental data.
Once all the genetic algorithm operators are applied

successfully, it will produce a new set of population. Fur-
ther they are decoded and the corresponding objective
function values were calculated. All these operations
would complete one generation of genetic algorithm.
The iterations will be further continued till the required
termination condition is obtained. The flow of genetic
algorithm concepts is shown in Fig. 3.

Table 2 Experimental layout for the BBD

Std
Order

Feed(f)
(mm/min)

Speed(s)
(rpm)

Axial depth of
cut(b)(mm)

Amplitude of
vibration
level(A)(mv)

Surface
roughness
(Ra) μm

1 20 1800 0.5 0.0640 0.800

2 60 1800 0.5 0.1430 0.333

3 20 3000 0.5 0.1128 2.200

4 60 3000 0.5 0.0944 0.333

5 20 2400 0.2 0.1780 2.860

6 60 2400 0.2 0.1980 0.530

7 20 2400 0.8 0.2220 0.800

8 60 2400 0.8 0.0730 0.330

9 40 1800 0.2 0.1462 0.200

10 40 3000 0.2 0.0834 1.130

11 40 1800 0.8 0.0634 0.200

12 40 3000 0.8 0.0896 1.730

13 40 2400 0.5 0.0752 1.200

14 40 2400 0.5 0.0752 1.200

15 40 2400 0.5 0.0720 1.200

Fig. 3 Flowchart for genetic algorithms
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Results and discussions
All the analysis of the data samples are performed by
using the Minitab software. Initially the data of the input
and output factors were checked for normality using the
probability plots as shown in the Fig. 4. It is observed
from the normal probability plots of the amplitude and
surface roughness, all the data points are distributed
along the normal line which confirms that all the points
are normally distributed. The second plot of both the
outputs reveals that the all the data points are not
followed any particular trend which clearly suggests that
this design is well fitted with the given data set and it is
varied between the limits between the −2 to 2. The third
plots of the response shows the frequency histogram of
data distribution. The fourth plot of the responses shows

the residue versus the observation data points highlights
the random points which signifies non-significance of
experimental order as far as the responses are
concerned.
Figure 5 illustrates the main effect plot for means of

amplitude of vibration level and surface roughness for
the level of process parameters. Main effects plots are
drawn to relate several factors at same time and display
the response means for each factor level in a sorted
order. It graphically compares results of input process
parameters at various stages and visualize the results of
the response parameters for different combinations of
inputs. A relatively flat line shows the mean of all the
responses in the data table of the experiments. This indi-
cates that the points near to the mean line has less effect

Fig. 4 Residual plots for the response. a Normality testing for amplitude. b Normality testing for surface roughness

Fig. 5 Main effects plot for the response. a Amplitude of vibration. b surface roughness
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on the response parameters whereas the points that are
lie on the above and below the mean line are having
greater effect on the outputs. The effects are the differ-
ences between the means and the reference line. For the
case of amplitude of vibration (A), the optimum process
parameters were feed of 20 mm/min, speed of 2400 rpm
and the axial depth of cut 0.2 mm as shown in Fig. 5(a).
Similarly, in surface roughness the parameters are feed
20 mm/min, speed of 3000 rpm and axial depth of cut
of 0.2 mm.

Interaction plots of responses
The 3-D surface plots are considered as a function of
two factors at a time. These response factors at fixed
levels provides information of interaction effects with
the two input factors, and helps to identify the
optimum level for each variable to get the maximum
response. Figure 6 shows the surface plots of ampli-
tude and surface roughness with variation in the
values of feed and speed. It is observed that as the
spindle speed increases from 2000 to 2500 rpm the
amplitude of the tool vibration level increases and re-
duces further. In the surface roughness plots, it is ob-
served that as the feed rate increases the roughness

value increases and there less significance due to
spindle speeds. The optimal surface roughness is ob-
tained with the combination of high spindle speed
and with low feed rate values.
Similarly the surface plots are obtained for the

responses versus the axial depth of cut (ADOC) and feed
rate as shown in Fig. 7. It is observed that for the feed
rate of 40 mm/min and a depth of cut of 0.4 mm, the
amplitude of tool vibration levels are low. Thereafter, as
the feed and depth of cut increases the vibration levels
also raises significantly. The surface roughness value in-
creases at a depth of cut 0.2 mm and a feed rate of
20 mm/min. Further, as the feed rate and depth of cut
increases, there is a downfall in the surface roughness
values.
Further the resposne plots are obtained for the depth

of cut and speed as shown in Fig. 8. At a low speeds
and depth of cuts the amplitude of vibration levles
rises. Similary the surface roughness value is high at
2500 rpm at a feed rate of 0.2 mm depth of cut. As the
speed increases there is low surface roughness values at
the depth of 0.2 mm. This signifies that high speeds
and low depths of cut are preferable to obtain the good
surface finish.

Fig. 6 Interaction plots of response with feed and speed. a Amplitude. b surface rourghness

Fig. 7 Interaction plots of response with feed and depth of cut. a Amplitude. b surface rourghness
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Training with radial basis function (RBF) neural netwoks
Recently, the radial basis neural network, has been draw-
ing attention due to its simple network structure which
reduces the lengthy mathematical calculations and the
good generalization capability as compared to the other
popular neural network techniques. In general, the RBF
networks consists of three layers such as (a) the input
layer (b) the hidden layer and (c) the output layer. The
hidden layer neurons are activated by the radial basis
function. The model data shown in the Table 2 is trained
using a radial basis neural network model trained with
various input vectors so as to reduce the error between
the plant data and neural network outputs. In most of
these networks, the neuron in the hidden layer generally
possesses the transfer function which is radially symmet-
rically in nature as shown in the Fig. 9.
In modelling the neurons of the hidden layer of the

RBF network, to be radially symmetric it must contain
the following three elements.

(i) Centre: It is the input domain vector, generally saved
in the output layer weights in the hidden layer
neuron.

(ii)Measurements of distance: It is considered as the
distance between the hidden node centre (c) and the
input parameter vector (x) called the Euclidian
distance of measure and it is given as ‖x(t) − cj(t)‖.

(iii)Transfer function: It describes the functional
mapping of the central nodal vector distance and the
output of the neuron. When the distance of measure
between the two vectors are small, then preferably
transfer such as Gaussian function is used which
mainly amplifies the values of the output vector. The
Gaussian function parameter width for the kth unit
of the hidden neuron vector is evaluated by the
following expression:

σk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
P

XP
P¼1

ck−ckp
�� ��

2
vuut ð9Þ

Where the P is the value determined heuristically for
the method of the closest neighbors; given a cluster
center ck, let k1, k2,……,kP be the indices of the P nearest
neighboring cluster centers.

Fig. 8 Interaction plots of response with depth of cut and speed. a Amplitude. b surface rourghness

Fig. 9 Schematic diagram of RBFN architecture
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Fig. 10 Trained neural network Skelton for different input vectors. a central vector of 6. b central vector of 7. c central vector of 9. d central
vectors of 10

Table 3 Output results of the trained neural network model

Case Inputs Outputs

f in mm/
min

N in
rpm

b in
mm

Amplitude of vibration(A) in mv Surface roughness (Ra) in μm

Initial Value RBF Value % error Initial Value RBF Value % error

1 20 1800 0.5 0.064 0.06479 0.005 0.8 0.824 0.0002

2 20 3000 0.5 0.1128 0.1228 0.001 2.2 1.45 0.07

3 40 1800 0.2 0.1462 0.1189 0.002 0.2 0.49 0.002

4 40 3000 0.8 0.0896 0.0912 0.0001 1.73 1.56 0.0017

5 40 2400 0.5 0.0752 0.074 0.0001 1.2 0.95 0.002
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In the present work, feed, spindle speed and axial
depth of cut are given as inputs and normalized values
of amplitude of tool vibration levels and surface rough-
ness are provided as target parameters. The RBF model
is trained such that it gives the values of vibration levels
and surface roughness values for any unknown input
data. From various trails of different input vectors, the
best possible RBF skeleton is chosen. Figure 10 shows
the convergence of training trend with such an input
training vectors.
The output results of the test data with the input data

are obtained after training. The neural network trained
data and experimental output data are compared and
depicted in Table 3.
Using the RBFN, the percentage of error is less than

1% for the central vector of 9. It is confirmed from these
above simulations, that the level of error are acceptable.
The modeled algorithms in this work could be imple-
mented and it can be further used efficiently in the esti-
mation of correct process parameter studies.

Optimization using multi-objective GA
In present work, the above process is simulated with a
population size of 60, selection type is tournament,
pareto front population fraction, crossover and mutation
probability are selected to be 0.35, 1 and 0.001, respect-
ively. MATLAB GA toolbox is used in this work.
Figure 11 represents the pareto optimal solution for the
two objective functions simultaneouly. It is observed
that the optimal minimum functional value obtained
from the plot as the amplitude of vibrations as 0.251mv
and surface roughness as 2.615 μm.
A pareto-optimal set of 18 solutions is obtained as

shown in Table 4. Moreover, all the solutions in the
Pareto-optimal set are almost close to each other but
run 6 the values of amplitude and roughness were nearly
minimum. The optimal cutting process parameter set is

obtained as speed of 1800.954 rpm, feed as 41.826 mm/
min and axial depth of cut as 0.799 mm respectively.
Further confirmation tests are conducted using the

trained radial basis neural network model and by the
experiments as shown in Table 5. Optimal input set
determined from the multi-objective genetic algorithm is
used in the simulated neural network model. It is
observed that the functional values are close to each
other with an error of 0.7%. These optimal combinations
of machining parameters which is shown in table, with
respect to the reference response parameters, satisfy the
real requirement milling operations for the proper ma-
chining of Al-6061 alloy.

Conclusions
This work proposed a multi-objective solution of the
cutting process parameters for the minimization of amp-
litude of vibration levels and surface roughness. Experi-
ments were planned using the response surface
methodology with the Box-Behnken design in three
levels for the machining of Al 6061 alloy. Based on the
above numerical simulations and experimental studies
the following conclusions were made:

� It is evident that the spindle speed and axial depth
of cut are having significant influence on the

Fig. 11 Pareto optimal plot for the response parameters

Table 4 Pareto optimal solutions obtained from multi-objective
GA

Sl.
No

Speed
(Rpm)

Feed
(mm/min)

Axial depth
of cut (mm)

Amplitude of
vibration level
(mv)

Surface
roughness
(Ra μm)

1 1800.730 41.525 0.658 0.241 2.825

2 1800.994 41.751 0.689 0.242 2.783

3 1800.902 41.623 0.700 0.242 2.767

4 1801.054 41.675 0.709 0.242 2.754

5 1801.026 41.822 0.795 0.250 2.622

6 1800.954 41.826 0.799 0.251 2.615

7 1800.954 41.828 0.730 0.243 2.723

8 1800.819 41.813 0.706 0.242 2.757

9 1801.005 41.818 0.790 0.249 2.631

10 1801.089 41.808 0.754 0.245 2.687

11 1800.974 41.628 0.750 0.246 2.691

12 1801.107 41.782 0.773 0.247 2.657

13 1801.036 41.711 0.785 0.249 2.638

14 1800.735 41.553 0.664 0.241 2.817

15 1800.950 41.629 0.719 0.243 2.739

16 1800.980 41.578 0.739 0.244 2.708

17 1800.962 41.792 0.744 0.245 2.702

18 1801.063 41.633 0.725 0.243 2.731
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amplitude of vibrations as compared to the surface
roughness. However, the interaction effects signify,
that low feed rate with high spindle speed minimizes
the surface roughness as well as the amplitude tool
vibration levels.

� The mathematical model developed in the work
gives the good co-relation between the process
parameters and the responses. In addition, the
Pareto based multi-objective genetic algorithms
model can obtain good quality solutions in short
time and are suitable for the multi-objective
environment due to its population based nature.

� The confirmatory tests are conducted by using both
the experiment and trained radial basis neural
network model gives an additional validation for the
correctness of the process parameter for multi-
objective response.

� With the use of the GA based multi-objective
optimization developed in this work, it would be
possible to obtain the conditions for good surface
finish with a lesser amplitude of vibrations.
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