Skip to main content
Fig. 3 | Mechanics of Advanced Materials and Modern Processes

Fig. 3

From: Modelling of thermomechanical behaviour of fibrous polymeric composite materials subject to relaxation transition in the matrix

Fig. 3

Reduced stresses in composites: 1,2 – longitudinal stresses: \( {E}_m^{(1)} \) = 10−4, \( {E}_m^{(2)} \) = 10−2; ψ = 0,1 (1), 0,5 (2); 3–5 – transverse stresses: \( {E}_m^{(1)} \) = 0,01, \( {E}_m^{(2)} \) = 1; ψ = 0,1 (3), 0,5 (4), 0,7 (5). Solid lines - calculations using (39); dash lines – calculations using (40). The notation used in Fig. 3 and 4: \( \begin{array}{l}\overline{\sigma}=\sigma /\left({\alpha}_a{E}_a{\theta}_k\right);\kern1em {\overline{E}}_M^{(i)}={E}_M^{(i)}/{E}_a;\kern1em {\overline{\alpha}}_M={\alpha}_M/{\alpha}_a;\kern1em {\theta}_k={T}_H-{T}_k;\kern1em {\theta}_g={T}_H-{T}_g;\\ {}\Delta \overline{\sigma}=2\left|{\overline{\sigma}}^e(T)-{\overline{\sigma}}^s(T)\right|{\left|{\sigma}^e\left({T}_k\right)-{\sigma}^s\left({T}_k\right)\right|}^{-1};\kern1em \overline{T}=\left({T}_H-T\right)\kern0.5em /{\theta}_k\end{array} \)

Back to article page
\