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Abstract

Advanced materials with heterogeneous microstructure attract extensive interest of researchers and engineers due
to combination of unique properties and ability to create materials that are most suitable for each specific
application. One of the challenging tasks is development of models of mechanical behavior for such materials since
precision of the obtained numerical results highly depends on level of consideration of features of their
heterogeneous microstructure. In most cases, numerical modeling of composite structures is based on multiscale
approaches that require special techniques for establishing connection between parameters at different scales. This
work offers a review of instruments of the statistics and the probability theory that are used for mechanical
characterization of heterogeneous media with random positions of reinforcements. Such statistical descriptors are
involved in assessment of correlations between the microstructural components and are parts of mechanical
theories which require formalization of the information about microstructural morphology. Particularly, the paper
addresses application of the instruments of statistics for geometry description and media reconstruction as well as
their utilization in homogenization methods and local stochastic stress and strain field analysis.

Keywords: Heterogeneous media, Random microstructure, Stochastic fields, Correlation functions, Effective
properties, Local stress fields, Multipoint statistics, Media reconstruction, 3D models

Introduction

One of the main problems of materials science is estab-
lishing connection between the physical and mechanical
properties of materials, their microstructural features
and parameters influenced by manufacturing process.
For many centuries, the main option for investigation of
this link remained direct experiments. Gathering the
vast amount of empirical information was the only way
to progress in creation of advanced materials. New
models and numerical simulation techniques which had
started to emerge in twentieth century significantly in-
creased possibilities of production of materials with tai-
lored parameters of microstructure to suit needs of the
specific engineering applications. That allowed to substi-
tute resource consuming experimental identification
with mathematical modeling and gave a boost to cre-
ation of new classes of materials. Among the most highly
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potential are heterogeneous materials that consist of
several phases with distinguished properties combined
together. Examples of materials belonging to this class
are particle and fibre reinforced composites, polycrys-
talline metal and ceramic alloys, poly-phase amorph-
ous materials and some classes of polymers (Fullwood
et al. 2010). In order to consider specifics of their
microstructure, which frequently contains randomly
placed elements, the special simulation techniques
were developed.

The problem of modeling of heterogeneous structures
is historically based on the mechanics of liquids and is
tightly connected with the problem of statistical descrip-
tion of behavior of particles systems (Torquato 2000;
Binder and Heermann 2010). The most common ap-
proach is to investigate heterogeneous media at different
scales. The microstructural peculiarities are usually be-
ing studied within the concept of representative volume
element (RVE). This element can be defined as the smal-
lest material’s volume at which the properties of phases
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can be distinguished and for which effective (homoge-
nized) properties can be measured.

RVE is usually being characterized at two scales. At
the lowest, which is yet by several orders larger than the
atomic scale, constitutive behavior at the material point
is described using traditional continuum equations.
Local properties and fields at this scale oscillate when
moving from one heterogeneity to another — that could
be phases in composite materials or grains in
polycrystals.

To avoid computationally expensive models involving
a large number of structural elements at the microscale,
the higher (macroscopic) scale RVE description is usu-
ally being used. It operates effective properties, which
can be constant or varying smoothly, and are defined
basing on the microstructural specifics.

Morphology of RVE plays an important role in model-
ling of effective thermomechanical and physical proper-
ties of random heterogeneous materials (Kanit et al.
2003; Khisaeva and Ostoja-Starzewski 2006). During the
latest decades, a large number of models, theories and
approaches were developed for characterization of in-
homogeneous materials. Their description is given, for
instance, in (Kaminski 2005; Buryachenko 2007; Kanouté
et al. 2009). One of the direction is to attract statistics
and theory of random function to describe random sys-
tems, which in most cases heterogeneous materials can
be considered as.

There are several assumptions about the statistical
properties of the microstructure that are commonly be-
ing taken. First of all, the statistical homogeneity hypoth-
esis presumes that each RVE sampled from the material
will have the same statistical properties (such as, for in-
stance, volume fraction). This assumption is usually
followed by the ergodicity hypothesis, which means that
ensemble average of values over a set of materials’ RVEs
is equal to averaging over a single RVE.

This paper offers a review of techniques which are
based on or utilize the statistical instruments for
characterization of internal structure, effective behavior
and local stress and strain fields of heterogeneous media.
It is primarily focused on the approaches for
characterization of randomly reinforced media, although
some of the instruments are also suitable for the other
classes of heterogeneous materials (the respective re-
marks are given in the text).

The section 2 of the paper is related to application
of statistical descriptors to obtaining formalized infor-
mation about microstructural morphology. Such infor-
mation can be used both for stochastic mechanical
models or as a ground for geometrical operations like
media reconstruction. The most commonly used de-
scriptors are introduced, their development in terms
of various applications is discussed. Methods of
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geometrical modelling of random structures are also
addressed.

The section 3 contains a summary of the
homogenization approaches which in certain ways rely
on statistical information about the microstructure. Re-
cent advances, which justify involvement of multipoint
and high order correlation functions, are presented.

The section 4 continues discussion of the methods of
stochastic mechanics in application to investigation of
local fields of stress and strain in components and inter-
faces between them. This is determined by necessity of
rigorous estimation of the critical zones when it comes
to analysis of damage and non-linear behavior. Statistical
moments for fields of stress and strain can be introduced
for particular elements of the microstructure and give
opportunity to indicate local changes and the respective
response of microscopic fields.

Microstructural description

Heterogeneous media characterization

Among the important problems of modelling of hetero-
geneous materials is consideration of peculiarities of
their random microstructure to the most possible extent.
The morphology of random media microstructure can
be studied as a complex system of many interacting
components. Mathematical instruments that are used
for description of such systems were developed within
the individual discipline — mathematical morphology
(Matheron 1975; Serra 1982).

Mathematical morphology was initially introduced for
image analysis and was primarily aimed on formalization
of microscopy images by extracting quantitative infor-
mation (Matheron 1971, 1975; Najman and Talbot
2010). It is mostly based on set theory, lattice theory,
topology and random functions. Capabilities of the
mathematical morphology were significantly expanded
from its emerging in 1964 during the last decades of
twentieth century, from processing of 2D binary black
and white images to 3D geometrical structures.

Particular instruments of mathematical morphology
are widely used in materials science for characterization
of complex internal structures of heterogeneous mate-
rials, such as experimentally obtained data from scan-
ning electron microscopy (SEM), transmission electron
microscopy (TEM), X-ray tomography (see Fig. 1). Ac-
cording to the methodology, images and structures are
subject to discretization and transformation prior to
quantification. For instance, microstructure image data
in a form of 2D and 3D arrays can be reduced by
thresholding to a binary array, which is mathematic-
ally described as a random set (Chiu et al. 2013).
Later, automatic procedures can be applied to deter-
mine desired measurements and various statistical
estimates.
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Fig. 1 Examples of micro-CT obtained microstructure: (@) Heterogeneous propellant, (b) Synthetic foam, (c) Glass beads (Lee et al. 2011)

500 Microns

Calculating the average values (or first (lower)-order
statistics) of local descriptors was the traditional way for
characterizing and quantifying microstructure (Fullwood
et al. 2010). Such metrics are often introduced as distri-
bution functions which deliver probability of presence of
a particular local state in materials point. The simplest
characteristic, which is volume fraction of each instance,
can be calculated as proportion of the area or volume
covered by one of the binary values. Another example
could be the orientation distribution function (ODF) for
polycrystalline microstructures.

More complicated descriptors originate from random
field theory and are introduced with the functions ap-
plied over the random sets of data. Among the most
commonly applied statistical descriptor functions are n-
point probability functions, surface correlation functions,
pore-size functions, cluster functions, nearest neighbor
functions, linear path functions and others (Matheron
1975; Torquato 2002).

One of the most widely used statistical instrument is
correlation functions. These functions show correlation
between random values, which, for instance, are spatial
positions of heterogeneities in matrix. They are one of
the simplest statistical measures that contain spatial in-
formation and yet are much more informative than one-
point statistics (Fullwood et al. 2010). The correlation
functions themselves can be constructed for any random
field inherent to heterogeneous media. In general, geo-
metrical characterization is performed with random in-
dicator function field, for which #-point spatial
correlation function for the RVE can be defined as:

S (s 71 70) = Qa(FO)A(F2) o A (7))
(1)

where 1, (7) is the indicator function, which is equal 1

if the position of the radius-vector 7 indicates phase a

and 0 in any other case; A, (?) is the mean value of the
function averaged over the RVE, which is equal to the
volume fraction of phase a. The latter representation ap-
plied to other random fields will be discussed in section
3 within the perturbation approach. The higher-order
correlation functions for the indicator function of two-
phase RVE with polydisperse spherical inclusions are
presented on Fig. 2.

The other definition of the correlation functions is
suggested by (Torquato 2002) who introduced the n-
point correlation function as:

Ps(n) (?1557}2777)37“'777}}1) = Ps (2)

where ps is probability that # points represented by
radius-vector are in local state S. These functions were
used by many authors in expressions for determination
of effective properties, such as conductivity, elastic mod-
uli, fluid permeability.

There are several methods of obtaining values of cor-
relation functions for plain images or digitized three-
dimensional models. The traditional way is sampling the
image via set of randomly placed vectors and calculating
local state at the points (Yeong and Torquato 1998a).
The specific image processing algorithms were applied
by Berryman (Berryman 1985). Cule and Torquato as
well as Fullwood (Cule and Torquato 1999; Fullwood et
al. 2008) used fast Fourier transform techniques. The
rigorous description of the procedures and algorithms of
obtaining values and applications of correlation func-
tions can be found, for example, in works of S. Torquato
(Torquato 2002) and D.T. Fullwood (Fullwood et al.
2010). Layered fast spherical harmonics expansion were
proposed for representation of the correlation functions
in (Li et al. 2010).

Application of correlation functions in engineering
analysis had started with development of X-ray
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Fig. 2 High-order correlation functions for RVE of media with polydisperse particles

scattering and diffraction. One of the fundamental works
(Debye et al. 1957) studied application of correlation
functions to characterization of X-ray scattering data
from porous materials with random distribution of
microstructural properties. The paper (Corson 1974) de-
livered methodologies that link properties of two-phase
structures to the experimentally calculated two-, and
three-point probability functions. Small angle X-ray scat-
tering technique has been used to get information on
the distribution of inclusions and dispersion of particles
(Walenta 1985). Being used in the analysis of effective
properties or microstructural stress and strain fields,
correlation functions can sense the influence of micro-
structural morphology parameters on the studied values
(Saheli et al. 2005; Fullwood et al. 2010). A number of
works were devoted to implementation of high-order
multipoint correlation functions in characterization of
the microstructure. High-order correlation functions can
be approximated using lower order functions. Such ap-
proach was implemented in (Remond et al. 2016).

The technique based on n-point correlation functions is
applicable not only to randomly reinforced types of mate-
rials. The concept of n-point orientation correlation func-
tion applied to polycrystals is presented in (Huang 2005).
N-point correlations for multi-phase materials and poly-
crystals are also discussed in (Groeber et al. 2008). Spatial
clustering of 3D microstructures obtained from the vertical
metallographic planes was analyzed by means of two-point
correlation functions in (Tewari et al. 2004). The paper
(Hansen et al. 2003) incorporates results of the exhaustive
branching technique, which is an alternative approach for
reconstructing discrete microstructures from two-point
correlation functions, applied to polycrystalline microstruc-
tures. This technique showed some advantages before an-
nealing methods. Gaussian random fields were used by
Roberts (Roberts and Teubner 1995; Roberts 1999). Princi-
ples of genetic algorithms for media reconstruction with
correlation functions were applied by Basanta and Kumar

(Basanta et al. 2003; Kumar et al. 2008). Research presented
in paper (Fullwood et al. 2008) proposes novel algorithms
based on phase-recovery methods used in signal processing.
More case studies were discussed in (Jeulin 2000; Bochenek
and Pyrz 2004; Al-Ostaz et al. 2007). The authors (Banias-
sadi et al. 2012) investigated the minimum required size of
RVE basing on convergence of the independent correlation
functions.

In general, several authors have mentioned limitations
of the lower-order correlation functions that led, for ex-
ample, to unallowable error estimate for the original and
reconstructed media. It was also shown that utilizing 2D
sections as a reference for 3D reconstruction puts limits
on possibilities to consider certain morphological fea-
tures intrinsic specifically to 3D structures. This has re-
quired introducing the supplement functions, capable to
capture specifics of the internal geometry in order to
perform more sophisticated analysis. Some of these
functions are introduced below.

Surface correlation functions capture information about
the spatial distribution of interfaces in the material and are
based upon the surface indicator function x, (7’1 ), which is
nonzero only at the interface of phase a (Torquato 2002;
Fullwood et al. 2010). Such two-point functions can contain
both surface and phases indicator functions:

F(71,,72) = (a(T)2(772)) (3)

Some functions were introduced due to needs of tak-
ing into account the features of the specific types of
media. Thus, pore size distribution function P(8)dd was
introduced to characterize porous media and shows
probability that a randomly chosen point in RVE lies at
the distance interval [J,d + dd] to the nearest point be-
longing to pore-solid interface.

In case when the microstructure of heterogeneous mate-
rials is not statistically homogeneous, the particles in RVE

may form groups and clusters. The cluster function C®)
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(71, , 7)2) gives the probability that two points 7°; and
7’ are in the same cluster of the phase a. This function
was described and used in (Torquato 2002; Jiao et al. 2009;
Liu et al. 2013).

The lineal path function L“(z) defines probability that
a randomly sampled line segment of the specified length
lies inside the particular phase. The same approach is
used to introduce chords - all of the line segments which
are formed by intersections of an infinitely long line with
the two-phase interface. The chord length distribution
function C*(z)dz outputs probability of finding a chord
of length between z and z+dz in phase a. The chord
length distribution and the lineal path function are two
common measures that contain information on particle
(or grain) shape that is independent from spatial distri-
bution. The applications examples of these two measures
are transport problems, fluid permeability (including
fluid flow through porous media), stereology.

The group of the nearest neighbor functions is as-
sociated with particle-reinforced media and analyses
probability of finding the nearest neighbor at some
given distance from a reference particle. A number of
variations of these functions that differ by the way of
definition of the sampled distance and reference
points, which can be distance between centers of the
particles, between boundaries of the particles, between
arbitrary points in RVE and particle’s center. Reverse
functions may be introduced, for instance, to estimate
spaces in matrix which are free of the particles.

Lineal path function and nearest-neighbor function
were used for accurate statistical media reconstruction
(Quintanilla and Torquato 1997; Yeong and Torquato
1998a; Hahn et al. 1999; Davis et al. 2011).

As was mentioned above, some specific statistical de-
scriptors can be introduced for characterization of polycrys-
talline materials (Groeber et al. 2008). Thus, the orientation
distribution function is a measure of the macroscopic

Table 1 Main morphological descriptors and their properties
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texture of a material. The misorientation distribution func-
tion provides information on the local arrangement of
grains. The micro-texture function is a measure of the
amount of clustering of orientations and misorientations.

The summary of major morphological descriptors is
presented in Table 1. Order of the function determines
whether the function is basic for the microstructural prop-
erty or is a derivative of basic descriptor. For instance, the
indicator function is lower order since it extracts particu-
lar feature of the microstructure, while the correlation
functions are of higher order since they are constructed
from the lower-order indicator functions. The «Measure»
column gives brief description of main characteristic that
the function delivers. There is also information about the
type of material for RVE of which the function can be ap-
plied as well as the dimension of sample required to ex-
perimentally obtain the values of the function (three-
dimensional data or plain two-dimensional image).

The mathematical properties and characteristics of de-
scriptors that have been introduced for microstructure
of heterogeneous media and materials are comprehen-
sively studied in (Serra 1982; Sobczyk and Kirkner 2001;
Torquato 2002; Fullwood et al. 2010).

Application of the mathematical morphology instruments
for microstructural characterization of heterogeneous media
allows to establish quantitative microstructure-property link
and evaluate impact of important inherent features such as
clustering, percolation, dispersion, orientation on overall
mechanical properties using the specific type sensitive de-
scriptors. This theoretically underpins the concept of design
of materials with prescribed properties by controlling micro-
structure during manufacturing and processing.

For the materials with predominantly periodic micro-
structure, such as textile composites with woven and
braided microstructure, some of the above described
statistical correlation instruments can be used to evalu-
ate deviations from the periodic trends (Cox et al. 2014).

Function Order Measure Material Sample dimensions
Indicator function Lower Presence of phase Any random media 2D and 3D
Correlation function Higher Spatial correlation Any random media 2D and 3D
Surface correlation functions Higher Interfaces distribution Any random media 2D and 3D
Pore size distribution function Lower Level of porosity Porous media Only 3D
Cluster function Higher Particles clustering Any random media Only 3D
Lineal path function Lower Connectedness of microstructure Any random media 2D and 3D
Chord length distribution function Lower Connectedness of microstructure and particles shape Any random media 2D and 3D
Nearest neighbor functions Lower Particles distribution Particle-reinforced media 2D and 3D
Orientation distribution function Lower Grain orientation, macroscopic texture Polycrystals Only 3D
Misorientation distribution function Lower Orientation of local arrangement of grains Polycrystals Only 3D
Micro-texture function Lower Amount of clustering of orientations and misorientations Polycrystals Only 3D
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They also help to understand how randomness in micro-
structure affects the properties of composites.

Heterogeneous media reconstruction

An important practical application of the statistical de-
scriptors is mathematical reconstruction of RVEs based
on the reference sample experimental data, formalized
in a form of statistical descriptors. Such procedure helps
to avoid repeating of imaging techniques each time
when the microstructure model is required. Created
microstructure is assumed to correspond to all relevant
microstructural features.

S. Torquato offered the method which involved
lattice-type representation of the discretized structure
and application of correlation functions (Yeong and
Torquato 1998a). It is aimed on minimizing difference
between actual and target correlation functions by
simulated annealing. In order to tackle high computa-
tional demands of the method, the discrete fast Fou-
rier transform is used (Fullwood et al. 2008). The
other reconstruction scheme relies on correlated ran-
dom Gaussian field and assigns a region the material
phase property if the value of a Gaussian random
variable is within the specified range. This approached
was mathematically developed in further works. Its
limitations relate to inconsistency when processing
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more than two-phase media and Gaussian character
of field requirement (Rozman and Utz 2001).

Correlation functions, obtained from the experimen-
tally gathered data, allows to create geometrical models
of microstructure that are statistically corresponding to
the reference real ones. The layout of this procedure is
presented on Fig. 3.

The goal of the reconstruction algorithms is to
minimize functional:

E=7) [55(7)-53(7)] (4)

where S5(7”) is target two-point correlation function, S§
(7) is two-point correlation function of the recon-
structed microstructure.

Some techniques allow to restore 3D structure from
information extracted from 2D sections (Liu et al. 2013),
which is helpful when three-dimensional imaging is
unavailable.

S. Torquato investigated the problem of reconstruc-
tion of one- and two-dimensional microstructures based
on stochastic optimization involving lower order correl-
ation functions (Yeong and Torquato 1998a; Torquato
2002). Particularly, annealing and Monte-Carlo tech-
niques are used to minimize an error between

n Imaging

n Parameterization

points containing
key structural
information

Characterization

1

Established |
path ;

v

Map characteristic
parameters and material
<4— design variables

Proposed path

nMicrostructure imaging techniques (SEM, TEM, etc.)
E Image binarization via image processing algorithm

Characterization via correlation functions

n Microstructure parameterization

B Reconstruction via correlation functions

n Predicting material properties FEM

Fig. 3 The basic framework of experimental data driven modeling methods (Liu et al. 2013)
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correlation functions of model and sample. C. Yeong
and S. Torqauto offered a procedure that incorporates a
set of statistical correlation functions obtained from a
two-dimensional image of the heterogeneous medium to
reconstruct the medium in 3D (Yeong and Torquato
1998b). The artificial anisotropic effect which appears in
this case and the ways of its consideration were dis-
cussed in (Sheehan and Torquato 2001). Reconstruction
of random media using lower order correlation functions
was later improved by Y. Jiao and S. Torquato in (Jiao et
al. 2007, 2008), where the lattice-point procedure for
sampling the digitized reference data as well as the
modification of the optimization algorithm was de-
scribed. Such approach was also implemented and inves-
tigated in (Manwart and Hilfer 1999; Rozman and Utz
2001; Talukdar et al. 2002). The other suggested varia-
tions of the reconstruction procedure included introdu-
cing different optimization techniques such as simulated
annealing and maximum entropy. Necessary conditions
on the two-point correlation functions were derived in
(Torquato 2006).

Further developments of the above described method
in the part of Monte-Carlo procedure are presented in
works of Baniassadi et al. (Garmestani et al. 2009; Li et
al. 2010). The latter study was particularly applied to re-
construction of waviness, geometry and preferential dis-
tribution of carbon nanotubes (CNTs). These authors
also investigated solid oxide fuel cell materials, for which
three-dimensional reconstruction was performed using
planar section of multi-phase composites (Baniassadi et
al. 2011). 2D realization of the microstructure obtained
from SEM images of carbon black particle fillers dis-
persed in rubber was studied in (Deng et al. 2012). The
work (Sheidaei et al. 2013) was devoted to 3D recon-
struction of nanotube polypropylene composite from fo-
cused ion beam (FIB) and SEM images. It was shown
that two-point correlation functions can only produce
an approximate reconstruction while the other groups of
statistical descriptors are required to obtain better re-
sults. The problems of experimental measurement of the
correlation functions are also discussed and studied in
(Remond et al. 2016). Three-dimensional reconstruction
technique using three-point third order correlation func-
tions was introduced in (Baniassadi et al. 2012).

Generation of random microstructures

Types of microstructure of heterogeneous materials can
be grouped into two main classes. First of them can be
defined as a statistical mixture and is represented by
complex interpenetrating frameworks of constituents,
each of which has its own individual bearing capacity.
The second group consists of materials that are formed
by matrix reinforced with inclusions of spherical, lamel-
lar, fibrous, elliptic and other forms. Some
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multicomponent composites may also have mixed types
of structures. Parameters influencing the RVE geometry
are the shape and size of the inclusions, the volume frac-
tion and the morphological details like the spatial orien-
tation and spatial distribution of the inclusions
(Bailakanavar et al. 2012). To be statistically representa-
tive, RVEs should contain sufficient information about
these features.

While now modern simulation methods allow to cre-
ate geometrical models of RVEs with wide range of
forms of phases and overall complexity, the simulation
of random microstructures had begun with modelling of
random arrangement of spheres (Fig. 4). Such micro-
structures initially were used in models for simple liq-
uids, concentrated suspensions, amorphous and powder
materials. Further a brief description for development of
models for RVE random packing is given.

The advances in modeling of dense disordered struc-
tures are mostly connected with the two groups of ap-
proaches: random sequential adsorption (RSA) and
dynamic (or concurrent construction) methods.

Sequential approaches presume determined or random
generation of microstructural particles. The first inclu-
sion is placed with its center at the chosen position in-
side a RVE. Next inclusion and center point is randomly
chosen from the diminished volume in the RVE. Like-
wise, the process of sequentially and randomly position-
ing an inclusion is continued till the desired volume
fraction is achieved or till the jamming limit is encoun-
tered. This method generates unit cells with non-
intersecting inclusions wherein the gap between the in-
clusions is user-defined, typically of the order of inclu-
sion size (Bailakanavar et al. 2012).

Sequential placement was studied by Bennett (Bennett
1972), who describes a consistent method when each
new inclusion is placed at the point closest to the first
so that it comes into contact with the existing inclusions.
Intersection is controlled by testing the distance between
the centers. Later, this method was modified by intro-
duction of a parameter characterizing the filling of the
area bounded by the tetrahedron (Lu et al. 1994). The al-
gorithm that allows to control clustering of inclusions
was proposed in (Kansal et al. 2000). The variation when
boundary point of each new inclusion coincide with an
arbitrary point on the surface of existing inclusions lo-
cated at the bottom of the virtual box is used in (Nolan
and Kavanagh 1992; He et al. 1999; Yang et al. 2000;
Furukawa et al. 2000).

Typical particles in heterogeneous materials are often
have different shape and size (see Figs. 4, 5 and 6). The
RSA algorithm was used to create geometry of RVE with
disks (Hinrichsen et al. 1986), spheres and spheroids
(Sherwood 1999; Segurado and Llorca 2002; Ghossein
and Levesque 2012), cylinders and sphero-cylinders
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d p=50%

e p=60%
Fig. 4 RVEs of polydisperse random structures with spherical inclusion of various volume fraction p: (a) 20%, (b) 30%, (c) 40%, (d) 50%, (e) 60%, (f) 70%

N

f p=70%

(Bohm et al. 2002; Williams and Philipse 2003; lorga et
al. 2008; Redenbach and Vecchio 2011; Zhao et al.
2012), thick fibers and ellipsoids (Evans and Ferrar 1989;
Parkhouse and Kelly 1995; Man et al. 2005; Bezrukov
and Stoyan 2007).

The RSA algorithm is generally limited by the volume
fraction it can reach (Evans and Gibson 1986; Parkhouse
and Kelly 1995; Toll 1998; Williams and Philipse 2003).
Methods aimed on increasing this limit up to 35% vol-
ume fraction were proposed by (Pan et al. 2008). The
hierarchical random sequential adsorption introduced by

(Bailakanavar et al. 2012) allowed to reach 45%. The cy-
lindrical inclusions can be packed with the volume of
50% using the approach that is described in (Islam et al.
2016), while the same volume fraction can be obtained
for spherical inclusions with the denser packing algo-
rithm proposed by (Segurado and Llorca 2002).

The distinct class of the random heterogeneous mate-
rials are cellular materials with voids, such as foams,
wood, bones, etc., and, consequently, low matrix volume
fraction. In this case, voids can be either topologically
connected or unconnected. The geometrically simplest

-

a

section radius equal to 0.6 (Bailakanavar et al. 2012)

Fig. 5 (a) RVE with short-fiber, volume fraction 5% and cross section radius equal to 2.4, (b) RVE with short-fiber,volume fraction 10% and cross
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Fig. 6 Geometry of (a) an ellipsoidal inclusion and (b) an RVE with ellipsoidal inclusions (Bailakanavar et al. 2012)

topologically connected cellular materials are regular
honeycombs, the in-plane behavior of which can be
modeled with planar hexagonal cell models. However,
unconnected voids require complex three-dimensional
geometry modeling: inclusions take forms of cubes (San-
tosa and Wierzbicki 1998) and polyhedrons (Grenestedt
1998; Sihn and Roy 2004; Daxner et al. 2007; Su et al.
2014; Zhang et al. 2014; B6hm and Rasool 2016). Voro-
noi tesselations have become a common tool in model-
ing irregular foams, and recently random Laguerre
tessellations have been proposed for generating periodic
multi-cell models (B6hm 2004; Redenbach 2009).

Inclusions of complex forms are essential part of
digitized geometrical representation of polycrystalline
materials (see Fig. 7). Thus, for instance, within the
monodispersive grain size model microstructural
grains are replaced by polyhedral inclusions. Voronoi
tesselations are a widespread approach for the geo-
metrical models of polycrystals, where they are used
for partitioning subregions that correspond to individ-
ual grains (Lazar et al. 2012). The grains are con-
structed around the centers that are distributed
randomly in space. (Gross and Li 2002) combined the
Monte-Carlo and the Voronoi tessellation methods
for grain-growth to generate nanocrystalline structures
with specified distributions of grain size. Molecular
dynamics simulations and equilibration were applied
within analysis of nanocrystalline materials in (Tomar
and Zhou 2007).

The methods described above belong to a class of
static methods and presumes that positions of inclusions
are fixed after synthesis. Dynamic models allow
reorganization of the structure depending on a way of
interaction of inclusions with each other (Buryachenko
and Pagano 2005). Various modifications of this method
can be found, for example, in (Clarke and Wiley 1987;
Oger et al. 1999; He and Ekere 2001; Knott et al. 2001).

Method for generation dense structures with non-
intersecting inclusions is proposed in (Bennett 1972).
Each consequently placed inclusion “moves” in the dir-
ection of the others along a straight line connecting their
centers until the contact condition is met. In more com-
plex models a system of differential equations is solved
for specifying movements and detecting intersections
(Knott et al. 2001).

There is also a method of achieving the desired density
of inclusions by changing the radii of spheres (see
Fig. 4d-f). In some models, each inclusion is subject to
small random movements, regardless of position of the
neighbor inclusions, until the best possible position for
denser packing of inclusions is found (Berryman 1983;
Cheng et al. 2000). The Hard-Core model, also called
random sequential adsorption model, was discussed by
(Lotwick 1982; Hinrichsen et al. 1986).

In addition, the models of inhomogeneous structures
can be obtained by Monte Carlo methods. Some models
of random structures are based on periodic lattices. Two
of them are described in (Kroener 1986): according to

Fig. 7 3D reconstruction of polycrystalline superalloy (Groeber et
al. 2008)
.
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the first, inclusion centers are aligned with randomly se-
lected lattice nodes, while each cell were assigned to
some phase forming what is now known as voxel model.

Another type of synthesis algorithms with presumed
particles movement is based on molecular dynamics
(Lubachevsky and Stillinger 1990; Lubachevsky et al.
1991). Each inclusion is assigned a random velocity vec-
tor and then are set in motion. Simultaneously, their
volumes gradually increase. When a binary collision oc-
curs, the velocities of the two concerned particles are
updated according to the kinetic energy conservation
principle. To meet the periodicity conditions, if particle
leaves the cell through a face during movement, it ap-
pears from the opposite side. This approach allows to
create the densest packing structures — up to 74% vol-
ume fraction for polydisperse spheres (Ghossein and
Lévesque 2013). The similar method was used for non-
spherical particles as well (Donev et al. 2004).

Effective properties

In addition to solving the problems of morphological ana-
lysis, statistical descriptors can be used as an instrument
for establishing the relationship between microstructure,
local and effective properties of heterogeneous media.
Finding suitable relationship between distribution, shape
and properties of each constituent and macroscopic re-
sponse of the heterogeneous material is one of the most
investigated questions of micromechanics. Among the
variety of the homogenization methods there is a broad
class of those rely on statistical approach. Some advan-
tages in these methods are introduced below.

First of all, one of the ground concepts uses perturbation
(or fluctuation) representation, which presumes decompos-
ition of the local stress and strain fields as well as local stift-
ness tensor into an averaged value and an addition:

05(7') = (05(7)) + 05(7) (5)
& (7) = (5(7)) +5(7) (6)
Cir(77) = (Cia (7)) + Cyr(7) (7)
whete 0(F) = &,(F7) = Cju(¥) =0, 7 is radius-

vector with components (x7, x5, x3). The angled brackets
indicate ensemble averaging, which is equal to volume
averaging when the hypothesis of ergodicity for statisti-
cally homogeneous material is assumed. The averaging
procedure for any coordinate-dependent value f (7) is
determined as:

¢(7) = [ FT)av ®)

where integration is performed over the representative
volume V.
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The perturbation method is usually suitable for
characterization of weakly inhomogeneous media
(Lomakin 1970; Beran and McCoy 1970), which means
that they are expected to give correct results in case of
small differences between the components properties
(Shermergor 1977) or small concentration of inhomoge-
neities (Jeffrey 1973; Lu and Song 1996).

The mean field approach facilitates the calculation of
the averaged field quantities in the constituent phases and
resultant determination of the effective properties
(Budiansky 1965; Hill 1965; Willis 1992; Benveniste 2008).

Models which are built in terms of the mean field approach
introduce strain concentration tensor as the functional con-
necting volume averaged strain for RVE and each phase:

*
(&)c =A:(e) ©)
where € is homogeneous strain, &¢ is averaged strain in
a phase C.

One of the homogenization schemes is represented by
the self-consistent methods, according to which analysis
is performed for a single particle of a typical constituent
embedded into the effective medium instead of studying
the whole RVE embedded in a homogeneous medium.

Under the ergodic assumption, statistical measures
such as N-point statistics can be used in equations of
the averaging schemes (Adams et al. 2005; Fullwood et
al. 2007) that combine decomposition of the perturb-
ation method and mean field homogenization relation
by means of localization tensor a(7’), which can be ob-
tained from the information regarding the local response
of a material (Fullwood et al. 2010):

¢(7) =a(7)(e)

The solutions based on Green’s functions, that are
used in these methods, include correlation functions of
different orders. Thus, localization tensor a(?) can be

defined with the Green’s function as follows:

1 . . ,
A7) =5 [ (Guns(772) + Gos(7 70)) [Co (7)

" +Cpp (F1)allss) (71)] V1

(10)

(11)

where G is the Green’s function, C’' is fluctuation of stiff-
ness tensor (7) that can be expressed via statistics and
structural correlation functions for the RVE, y denotes
order of expansion of the series. The Green’s function type
is determined by the properties of medium, while the order
of the series expansion y defines the order of required stat-
istical descriptors presumed by fluctuation tensor C'.

The Green’s function in (11) has a singularity in point
7 = 7. The approaches that helps to overcome it and
some exact expressions are obtained in (Shermergor
1977; Kroener 1986; Torquato 1997, 2002). The results
of application of the first and second derivatives of the
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Green’s function to resolve this issue is discussed in
(Tashkinov 2015).

Series of works by S. Torquato were devoted to application
of perturbation method and integral equations with Green’s
function to derive effective conductivity and elastic properties
for two-phase media. Some exact solutions for the specific
types of media are presented in (Torquato 2002).

Some other statistical models that focus on local re-
sponse are based on the percolation theory and Weibull
analysis (Jayatilaka and Trustrum 1977; Frary and Schuh
2005; Chen and Schuh 2006), and may also be used to
connect micro- and macro- properties depending on
statistical information about the microstructure. Alterna-
tive approaches rest upon neural networks, which im-
prove fitting models for modeled and observed
microstructural data (Bhadeshia 1999).

Spectral methods, incorporating microstructural correl-
ation functions, use spectral representations of distribution
functions that statistically characterize the internal structure
of representative volumes and connect these representa-
tions and macroscale effective properties using existing
homogenization schemes (Kalidindi and Houskamp 2007).

The known fact is that it is impossible to achieve exact
prediction for effective properties of random media, so
rigorous assessment can be done in the form of bounds.
One of the most commonly used bounds are based on vari-
ational principle according to which the effective parameter
is expressed in terms of functional for which the variational
(extremum) principle is being formulated. Primarily, vari-
ational methods for homogenization purposes analyze ap-
proximate fields substituted into energy bounds by
averaging the energy density (Hashin and Shtrikman 1963),
while classical variational methods employ minimum en-
ergy principles to generate bounds on effective properties.
The microstructural information is considered via different
types of correlation functions (Willis 1981; Torquato 1991;
Ponte Castaneda and Suquet 2001; Milton 2002). The
correlations which are required for calculation of the
bounds of effective values using variational methods ex-
press, for instance, probability of finding n points with
position 7" = {?1, ey 7,,} in phase i for statistically in-
homogeneous media, finding a point with position 7’1 in
the exterior to the phase particles and any # particles with
coordinates 7", finding points at the interface, finding a near-
est neighbor at radial distance r from the origin. Each type
of these functions depends upon the relative position of the
n points inside the RVE. The bounds of the effective proper-
ties are usually characterized by the number of points in-
volved in the correlation functions (Torquato 1991).

Improved bounds, which were developed later and are
tighter than the traditional Hashin-Shtrikman bounds,
depend on high order correlation functions rather than
volume fractions. Three-point bounds were developed in
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(Beran 1971; Torquato 1980, 1991; Milton 1982; Casta-
neda 1998; Agoras and Ponte Castaiieda 2011; Ponte
Castafieda 2012). Mikdam and Baniassadi (Mikdam et al.
2009, 2010, Baniassadi et al. 2011, a) have applied the
strong-contrast formulation to predict the effective elec-
trical and thermal conductivities of a two-phase compos-
ites using two-point and three-point correlation
functions. The current limitation is that in the case of
strong inhomogeneity of microstructure these bounds
might not be helpful because they tend to diverge with
increasing contrast between the properties of the con-
stituents (Torquato 2000; Buryachenko 2007).

Large amount of work on developing of the variational
estimates of effective properties of heterogeneous media
has been done by P.P. Castaneda, the recent develop-
ments in that area as well as review of the previous re-
search can be found in (Ponte Castaneda 2016).

In order to simplify modeling, the real stochastic
structure can be replaced by some specific one, which
is then being analyzed. Among such substituends are
fractal-type media based on spherical or cylindrical
coated inclusions (Hashin and Shtrikman 1962; Ben-
veniste and Milton 2003), two-phase composites with
statistically equivalent phases (Dykhne 1970), regular
structures (Keller 1963; McKenzie et al. 1978; McPhe-
dran and McKenzie 1978), unit cell with randomly
dispersed inclusions (Kushch 1997; Guseva and Lusti,
2004) or percolation models (Sahimi 1998).

There are many other homogenization techniques exist
that utilize different instruments for characterization of spe-
cifics of microstructure as well as linear and nonlinear be-
havior of materials. For instance, Rasool and Boehm (Rasool
and Bohm 2012) compared inhomogeneity shape effects on
the linear elastic, thermoelastic and thermal conduction ef-
fective responses of composites. Klusemann (Klusemann et
al. 2012) studied three strategies for dealing with inhomoge-
neities of non-elliptical shape in the context of
homogenization method: mean-field methods used in com-
bination with analytical expressions for the Eshelby tensor,
Mori-Tanaka method in combination with the replacement
tensor approach and direct Finite Element discretization of
microstructures. The review of multiscale methods for mod-
elling mechanical and thermomechanical responses of com-
posites can be found, for example, in (Kanouté et al. 2009).

Statistical characterization of local stress and
strain fields

The problem of prediction of effective properties in
some approximation can be solved involving only the
averaging statistical descriptors. However, models of fail-
ure and nonlinear analysis are tied on the specific fea-
tures of local stress and strain fields where microscale
fluctuations must be taken into account. Special atten-
tion should be given to the interfaces between the
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constituents and their vicinities as those are the most
common zones of failure initiation. The random struc-
ture of heterogeneous materials leads to necessity of
analysis of large number of system’s realizations (Burya-
chenko 2007). To eliminate that, distribution of fields in
random structures can be estimated using the statistical
moments of stress and strain fields that can be obtained
either for homogeneous RVE or for its constituents sep-
arately as well as for the interface between the matrix
and inhomogeneities. At this case, the same techniques
as was developed for analysis of effective properties can
be applied. The importance of the stress fluctuations is
discussed in details in (Buryachenko 1996; Ponte Casta-
neda and Suquet 2001) for a wide class of nonlinear
problems of micromechanics such as plasticity, damage,
viscosity, or creep. The multipoint statistical moments of
the stochastic stress and strain fields are used as the
characteristics of the deformation processes in the com-
ponents of the material.

The above described perturbation approach as well as
method of integral equations can be applied for calcula-
tion of statistical descriptors for the local stress and
strain fields in microstructure.

A general scheme for calculating the second-order mo-
ments of the random elastic fields in the case of a compos-
ite of inclusion-matrix type using perturbation approach is
presented, for example, in (Buryachenko 2007). Kroener
(Kroener 1986) and Beran (Beran 1965) developed statis-
tical mathematical formulations to link correlation func-
tions to properties in multiphase materials.

The exact estimation of all components of the second mo-
ment tensor of the pure elastic and internal residual stresses
using perturbation approach is given in (Buryachenko and
Kreher 1995), where it was shown that the second moment
of the stress field is constant within the inclusions if a homo-
geneity of random effective stress fields in the neighborhood
of each ellipsoidal inclusion was assumed. Explicit relations
for second moments of stresses were obtained in (Burya-
chenko and Rammerstorfer 1998) and utilized second and
third order interactions between inclusions.

Combination of perturbation method and variational
principle (Bergman 1978), which is based on the esti-
mation of the perturbation of an energetic function
due to a variation of the material properties, was de-
veloped for estimation of stress fluctuations for RVEs
with isotropic components (Bobeth and Diener 1986;
Kreher 1990). Xu (Xu et al. 2009) employed the gen-
eralized variational principles to decompose a bound-
ary value problem with random microstructure into a
slow scale deterministic problem and a fast scale sto-
chastic one using a Green’s function based multiscale
method.

Recursive approach for computing a probability dens-
ity function of stress fields is described in (Hori and
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Kubo 1998). Numerical statistical analysis at the inclu-
sion scale level was performed by (Babuska et al. 1999).

Several exact solutions for second order moment of
stress fields were offered for some cases of deterministic
structures. One of such models is media with regular
structure (Evans 1978; Fu and Evans 1985; TVER-
GAARD and HUTCHINSON 1988). However, their lim-
itations are connected with lack of consideration of
spatial distribution of constituents which may have a sig-
nificant effect on the local stresses.

Method of integral equations allows estimation of sec-
ond moments of stresses in the components. Considering
both binary and triple interaction of the inclusions, expli-
cit relations for second moments of stresses can be ob-
tained (Buryachenko 2011). The method implies that
description of heterogeneous medium can be imple-
mented via structural-phenomenological approach when
mechanical properties of microstructural components are
defined with conventional phenomenological equations
and criteria while microscopic strain and stress fields are
computed using the solutions of stochastic boundary value
problems (SBVPs) with rapidly oscillating coefficients.
Fluctuations of displacements can be obtained by integra-
tion with the Green’s function method:

A%

oP;,(7'1) (12)

w(7) = [ 6 )™

Vi

Here, u;(7) is fluctuation of displacements, Gy
(7, ?1) is the Green’s function. P;, (71) is a functional,
containing constants from boundary conditions as well
as stiffness tensor. The structure of the functional is dif-
ferent depending on the ways of solution.

The study of behavior of composites with random
structures in these frameworks was established by works
of Lifshitz and Rosenzweig (Lifshitz and Rosenzweig
1946) which were devoted to SBVPs of elasticity theory
for polycrystalline media. Depending on the SBVP solu-
tion different statistical models can be distinguished.
The numerous ways of closing the integral equations
were offered — the method of effective medium (Hashin
1968; Buyevich 1992; Koelman and de Kuijper 1997), dif-
ferential method (Milton 1985; Zimmerman 1996; Phan-
Thien and Pham 2000), Mori-Tanaka-Eshelby method of
the average fields (Hatta and Taya 1985; Benveniste
1986; Chen and Wang 1996; Weber et al. 2003), the sin-
gular approximation method (Shermergor 1977; Shvidler
1985), the strong isotropy hypothesis and method of
conditional moments (Khoroshun et al. 1993), correl-
ation approximation and multipoint approximation
(Volkov and Stavrov 1978; Tashkinov et al. 2012; Tashki-
nov 2015). Some of the techniques are described below.
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If composite’s constituents are isotropic and RVE can
be macroscopically considered an isotropic medium, the
strong isotropy hypothesis can be used (Khoroshun et al.
1993). It assumes that for calculation of two-point mo-
ments the components that depend on a choice of direc-
tion between two points of can be neglected.

Method of conditional moments for random compos-
ites is based on an assumption that the fluctuations of
random fields within a component are quite small. This
allows to reduce the problem to a system of linear alge-
braic equations for one-point moments. Such modified
problem is solved in two-point approximation using the
statistical information and a number of simplifying hy-
potheses concerning the nature of the distribution of in-
clusions in the matrix volume (Khoroshun et al. 1993).

For a wide class of stochastic heterogeneous media
models, periodic structure can be regarded as a
realization of a random structure. The method of peri-
odic components suggests that averaged parts of fields
decomposition correspond to the periodic structure
(Sokolkin and Tashkinov 1985; Pan’kov et al. 1997). Such
representation allows taking into account fractional con-
tent, connectivity and geometric shape of components
which are common both to the random and periodic
structures.

Local approximation method is based on the specifics
of short-range interactions of inclusions in matrix com-
posites, according to which the problem of deformation
of heterogeneous media is reduced to the simpler prob-
lem of deformation of an unbounded domain with an
ensemble of a small number of inclusions. Feature of
local interactions is not related to the specific nature of
the mutual arrangement of the inclusions as well as to
their shape, so the method has been applied for compos-
ites with random structures (Anoshkin et al. 1991). The
hypothesis of limiting locality of correlation functions al-
lows obtaining a single-point approximation of SBVPs
and avoiding computation of the integrals over the field
of statistical dependence of the correlation functions.

Many stochastic methods are based on the assumption
of statistical independence of random fields of physical
and mechanical properties of composites, which means
that each geometric point is identified with a grain of
heterogeneity and the fluctuations of physical and mech-
anical properties in the neighboring grains are not corre-
lated, and, thus, only the one-point statistical
characteristics of a random structure can be taken into
account. For the composite with deterministic properties
of the structural elements all one-point structural statis-
tical characteristics are determined by relative volume
concentration of elements in the assumption of homo-
geneity and ergodicity of the random fields.

The fundamental work by T.D. Shermergor (Shermer-
gor 1977) offered a number of techniques for the weak
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contrast heterogeneous media. In the singular approxi-
mation (Shermergor 1977) only the formal component
of the second derivatives of the Green’s function for a
homogeneous unbounded medium is retained. The cor-
relation approximation also uses the formal component,
however, it takes into account only pair interactions, so
the correlation functions of a higher order than binary
are disregarded. In general, the correlation theory can be
applied when the standard deviations of the structural
elastic moduli are small in relation to their mathematical
expectation. Correlation approximation was developed
in (Shermergor 1977; Volkov and Stavrov 1978). Sto-
chastic methods in correlation approximation lead to
good results for a small difference in the elastic modulus
of the composite or weak anisotropy. The full correl-
ation approximation assumes that all the terms, obtained
in solution of the SBVP in the first approximation, are
being considered, including those containing correlation
functions of order higher than the second. The statistical
characteristics in the full correlation approximation and
second approximation of the solution of the SBVP were
calculated in (Sokolkin and Volkova 1992; Tashkinov et
al. 2012; Tashkinov 2014, 2016).

The second order moments of stress can be used in
statistical models for nonlinear mechanical behavior and
fracture of heterogeneous media. The crucial role of
these moments in nonlinear analysis is explained by the
fact that the yield surface, inclusions interface failure cri-
terion and the energy release rate are the quadratic func-
tions of the local stress distributions (Buryachenko
2011). Thus, Sakata (Sakata et al. 2012) discussed predic-
tion of microstructural failure probability using Monte-
Carlo simulation, the perturbation-based stochastic
homogenization method and a stochastic multiscale
stress analysis. Mishnaevsky (Mishnaevsky et al. 2004)
studied the effect of particle clustering on the effective
response and damage evolution in particle reinforced
Al/SiC composites and used probabilistic analysis to de-
termine failure of matrix and materials.

Conclusions

While comprehensive analysis of interconnection of
multiscale parameters of heterogeneous materials re-
mains a challenging problem of micromechanics, in
some instances microstructure can be described statisti-
cally. This work reviews the main techniques and
methods for multiscale mechanical analysis of random
heterogeneous materials by means of statistical descrip-
tors and instruments. Experimental and numerical re-
construction based on statistical descriptors to obtain an
accurate structure can be used for optimization of het-
erogeneous materials. Statistical characterization of local
microstructural fields of stress and strain is one of the
instruments for estimation of damage nucleation and
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understanding of nonlinear phenomena. The same nu-
merical techniques and theoretical approaches allow to
obtain fast numerical assessment for homogenized prop-
erties taking into account multipoint microscale
interactions.

Some drawbacks of the statistical methods are that in
most cases they are not customized for calculation of
precise results. In order to receive more rigorous esti-
mates, the introduced approaches can be used in com-
bination with or within the other analytical and
numerical methods of mechanics of composites. Besides,
the microstructure of heterogeneous materials in the
frameworks of statistical characterization is considered
static, although some approaches can be generalized to
dynamical problems.

Statistical descriptors and measures are important ele-
ments of microstructure sensitive design methods which
facilitate inverse design for optimized performance of
heterogeneous materials. Effectiveness of a particular
statistical metric is connected with ability to capture the
most influential features of microstructure. With exten-
sion of accessibility of computational capacities, statis-
tical approaches allow to consider high-order
interactions and open possibility to enhance the existing
mechanical theories with more precise microstructural
statistical instruments.
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