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Abstract

Background: Graphene has been reported to be a promising nanofiller in fabricating advanced metal matrix
composites.

Methods: Graphene nanosheets (GNSs) have been incorporated into an aluminium matrix composite using
mechanical milling and hot pressing in the current study.

Results: The SEM observation shows that aluminium particles are firstly flattened into flakes, and then fractured/
rewelded into equiaxed particles as the ball milling progresses. The crystalline size is decreased and the lattice strain
is increased during the ball milling, which are also intensified by the added GNSs. The hardness of the composite is
increased by 115.1% with the incorporation of 1.0 vol. % GNSs.

Conclusions: The local stress induced by the hard GNSs accelerates the milling process. The X-Ray diffraction
patterns show that the intensity ratio of (111) to (200) can reflect the preferred orientation of the particle mixture,
and the evolution of I(111)/I(200) agrees well with the observed results using SEM. The increased hardness is mainly
attributed to the refined microstructure and Orowan strengthening.
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Introduction
Aluminium matrix composite (AMC) has found wide ap-
plication in the fields of aerospace, automobile, military,
transportation and building, due to its attractive properties
such as light weight, corrosion resistance and superior duc-
tility (Bodunrin et al. 2015). Graphene is a very promising
reinforcing phase in AMC because of its outstanding prop-
erties, including high mechanical strength, modulus, ther-
mal and electrical conductivity (Stankovich et al. 2006;
Novoselov et al. 2012; Zhu et al. 2010; Niteesh Kumar et al.
2017; Shin et al. 2015). Bartolucci et al. (2011) are among
the pioneer researchers and introduced graphene into
AMCs using ball milling in 2011. Graphene is normally
added into the matrix in the form of graphene nanosheets
(GNSs) with several to tens of layers (Asgharzadeh and
Sedigh 2017; Pérez-Bustamante et al. 2014; Nieto et al.
2016). Up to 5 wt.% GNSs were incorporated into AA2124

alloy, and it was found that the hardness of the composite
was increased by 102%; the wear rate decreased 25% with
9% reduction in coefficient of friction (El-Ghazaly et al.
2017). A wet method was utilised to mix aluminium with
graphene in the study of Asgharzadeh et al. (2017), which
showed that the yield strength and hardness were both
enhanced. The possible strengthening mechanism for the
GNSs reinforced AMCs were reported to be grain refine-
ment, Orowan strengthening, stress/load transfer and
increased dislocation density (Nieto et al. 2016). The
strengthening effect of GNSs also highly depends on the
uniform dispersion of GNSs among the metal grains.
Mechanical milling involves the cold welding, fracturing
and rewelding of particles, which is an effect way to uni-
formly disperse GNSs into aluminium matrix (Nieto et al.
2016; Hu et al. 2016; Suryanarayana and Al-Aqeeli 2013).
In the literature, it is noted that Al-Si alloy is widely used in
the fields of aerospace and automobile due to its high spe-
cific strength, good corrosion resistance and castability
(Mazahery and Shabani 2012). However, this alloy is
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restricted in certain tribological applications owing to the
low hardness and wear-resistance. GNSs are in the right
place to improve the hardness and tribological behaviour,
as GNSs are potential to boost the mechanical properties
and are also tribology-favoured (Nieto et al. 2016).
The research on GNSs reinforced Al-Si alloy is still quite

limited. The current study focuses on the synthesis and
characterisation of GNSs reinforced A355 Al-Si alloy
matrix composites. The effect of GNSs on the morpho-
logical and microstructural evolution of the composite
powder has been investigated during the mechanical mill-
ing. The preferred orientation, lattice strain, crystalline
size and micro hardness have been studied as well.

Experimental
Starting materials
The morphologies of the starting materials are shown in
Fig. 1. The as-received aluminium powder is generally in
spherical shape. Commercial A355 Al-Si alloy (Si: 4.6%, Cu:
0.8%, Mg: 0.51% and Fe: 0.15%) powder with an average
particle size of 30 μm was supplied by Haoxi Nanotechnol-
ogy. The GNSs are characterised with 1–5 nm in thickness
and ~ 5.0 μm in lateral size, which were bought from
XFNANO Materials Tech. as shown in Fig. 1(b) and (c).

Ball milling
The powder mixture of Al alloy and 1.0 vol.% GNSs was
milled in a planetary ball mill, which was carried out in
a 500 ml stainless steel jar. The confined powders were
firstly ball milled at 180 rpm for 0.5 h for pre-mixing,
and then at 250 rpm for the following 20 h under argon
atmosphere. Samples were taken out at 2, 5, 10, 15 and
20 h to investigate the effect of ball milling on the
microstructure of the powder mixture. In a typical mill-
ing campaign, 300 g of 5 mm stainless steel balls was
used with a ball to powder ratio of 15:1 in mass. Stearic
acid (2 wt.%) flakes were added to work as a process
control agent. To avoid the overheating and sticking of
the powder mixture, every 5 min ball milling was
followed with15 min rest in every milling cycle. Pure
A355 powder was ball milled under the same conditions
for reference.

Morphological and microstructural evolution of the
powder mixture
The ball milled powders at different times were observed
on the JEOL JSM-7500FA microscope with an acceler-
ation voltage of 5 kV. X-Ray diffraction (XRD) patterns
were acquired using GBC MMA XRD diffractometer
with Cu-Kα radiation from 25° to 85°. The step size and

(a) (b)

(c)

Fig. 1 The SEM morphologies of the as-received (a) aluminium powder. The morphology of the as-received GNSs observed using (b) SEM and (c)
TEM. The inset shows a high-resolution micrograph of the lattice of the GNSs, with indicated number of layers
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scanning rate were 0.02° and 1.5 °/min respectively. The
crystalline size and lattice strain were analysed using
William-Hall theory as follows (Wagih 2014):

Bcosθ ¼ 0:9λ
D

þ 4εsinθ ð1Þ

where B, λ, θ, D and ε are the full width half maximum,
the wave length of X-ray, the peak positions, crystalline
size and lattice strain of the powder, respectively.

Fabrication and characterisation of the bulk materials
The ball milled powders were cold pressed at 350 MPa
and then vacuum hot pressed under 50 MPa at 500 °C for
60 min to produce Ф 20 mm disks. The disks were degasi-
fied to remove the stearic acid at 400 °C for 2 h before the
hot pressing. The produced disks were grinded using abra-
sive papers and polished before the following characterisa-
tion. Vickers hardness was measured on a TIME TH715
micro-hardness tester under 9.8 N with a dwell time of
10 s. At least ten readings were taken for each sample to
obtain the average value. Raman tests were conducted on
a WITec® alpha 300R confocal Raman microscope
(532 nm laser) to examine the distribution of GNSs. TEM

samples were prepared using a FEI Helios nanoLab G3
CX dual beam microscope and then observed on a JEOL
JEM-2011microscope.

Results and discussion
Morphology
The SEM micrographs of the ball milled Al alloy and
Al-GNSs composite powders are shown in Figs. 2 and 3
respectively. Aluminium is a relatively ductile phase in the
ball milling system, while Si and GNSs particles are rela-
tively brittle. The ductile aluminium particles are repeat-
edly flattened, cold welded, fractured and rewelded in the
ball milling process (Suryanarayana and Al-Aqeeli 2013).
As shown in Fig. 2, the starting aluminium particles are in
spherical shape with about Ф 30 μm in diameter and grad-
ually flatten into flakes from 2 to 10 h. The lateral size of
the aluminium flakes reaches around 80 μm at 10 h. The
flakes are fractured into smaller pieces at 15 h as shown in
Fig. 2(e) and rewelded into equiaxed particles at 20 h. The
relatively hard phase, Si, could accelerate the fracturing
and rewelding, and is embedded into the aluminium
matrix (Suryanarayana and Al-Aqeeli 2013). The presence
of GNSs can further intensify the localised stress, and thus
accelerates the flattening of aluminium powders as shown

Fig. 2 The SEM morphologies of the ball milled Al alloy powders at (a) 0 h, (b) 2 h, (c) 5 h, (d) 10 h, (e) 15 h and (f) 20 h

Zhang et al. Mechanics of Advanced Materials and Modern Processes  (2018) 4:4 Page 3 of 9



in Fig. 3 (a) to (d). Aluminium flakes with more than
120 μm in lateral size can been seen at 10 h. When the
plastically deformed aluminium flakes are work-hardened
to a critical level, the localized stress induced by GNSs will
promote the fracture and rewelding of powders. As shown
in Fig. 3 (e) to (f), aluminium powders are fractured and
rewelded into relatively equiaxed shape at 15 h and further
fractured into smaller particles at 20 h. As a result, the size
of the Al-GNSs mixture is less than 20 μm, which is
smaller than the size of the Al alloy powder (around
25 μm) after 20 h of ball milling. The GNSs tend to be-
come occluded and trapped in the aluminium particles,
and finally get uniformly dispersed inside the matrix (Sur-
yanarayana and Al-Aqeeli 2013).

Microstructural analysis
The XRD patterns of the ball milled Al alloy and
Al-GNSs powder mixtures at different milling times are
shown in Figs. 4 and 5 respectively, revealing the micro-
structural evolution of the powder mixing during the
ball milling. It is seen that the peak intensity of alumin-
ium decreases with the increase of milling times up to
20 h. There is no obvious change for the peaks of Si, in-
dicating no significant structural change for this

relatively hard phase. As the concentration of GNSs is
only 1.0 vol.%, the peak of GNSs is not distinguishable
in XRD observation. For FCC metals, it has been indi-
cated that the intensity ratio of (111) to (200), I(111)/
I(200), can reflect the change in crystallographic orienta-
tion of particles in the ball milling process. While for
BCC metals, I(110)/ I(200) is used (Razavi-Tousi and
Szpunar 2015; Alizadeh et al. 2011). As shown in Fig. 6,
the I(111)/ I(200) firstly drops to a minimum value and
then increases to the initial level. This process is faster
for the Al-GNSs composite due to the aforementioned
localised stress induced by the addition of GNSs. This
could be explained by considering the anisotropy in the
elastic modulus of a single aluminium crystal (Alizadeh
et al. 2011). To be specific, the aluminium grains/parti-
cles tend to be deformed in the soft direction (111),
which is perpendicular to the collision direction of mill-
ing balls. When the powder sample is prepared for the
XRD analysis, the flattened flakes arrange themselves
parallel to the sample holder. As a result, I(111) de-
creases and I(200) increases, which is the case for the
powders from 2 to 10 h. With further ball milling, the
flattened particles are fractured and rewelded into
equiaxed particles, which means the texture and the

Fig. 3 The SEM morphologies of the ball milled Al-GNSs composite powders at (a) 0 h, (b) 2 h, (c) 5 h, (d) 10 h, (e) 15 h and (f) 20 h
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preferential orientation are eliminated from 15 to
20 h. Meanwhile, the I(111)/I(200) recovers to the ini-
tial level. This evolution behaviour agrees very well
with the SEM observation results as shown in Figs. 2
and 3, which show the morphological change of the
powders.
It is also seen in Figs. 4 and 5 that peak broadening is

caused as the milling process progresses, which indicates
the refinement of crystalline grains and the generation
of lattice strain. The mean crystalline size and lattice

strain can be evaluated using the William-Hall theory,
and are illustrated versus milling time in Figs. 7 and 8
respectively. It is shown in Fig. 7 that the crystalline size
of aluminium decreases quickly during the initial 5 h
and decrease slowly in the following milling process. In
addition, the crystalline size of Al-GNSs composite is
smaller than that of Al alloy at the same milling time,
which could be attributed to the intensified stresses by
the GNSs. This also causes the increased lattice strain
during the ball milling as shown in Fig. 8. The GNSs

Fig. 5 X-Ray diffraction patterns of the ball milled Al-GNSs composite powders at different times

Fig. 4 The XRD patterns of the ball milled Al alloy powders at different times
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accelerate the deformation of the crystalline lattice and
promote the lattice strain rate of Al-GNSs composite.
Figure 9 shows the TEM microstructure of the produced

bulk samples. For the Al alloy sample, most of the coarse
grains are in flake-shaped with an average grain size of about
1 μm. It is also noticed that there is a small portion of fine
grains (around 100 nm). This means that the microstructure
of Al alloy sample is not uniform, which could be caused by
the insufficient deformation during ball milling. The micro-
structure of the Al-GNSs composite presented in Fig. 9 (c)
shows that the addition of 1 vol.% GNSs dramatically reduce
the grain size and the size of the grains is quite similar (app.

100 nm). The grain refinement is firstly attributed to the in-
tensified deformation during ball milling, which greatly re-
duces the grain size and gets the GNSs well dispersed.
Highly deformed regions are marked in Fig. 9(b), where also
feature the concentrated sites of dislocations. Secondly, the
incorporation of the thin GNSs largely decreases the inter-
planar distance between GNSs, which could perform pinning
effect and restrain the grain growth during hot pressing. It is
challenging to directly observe the GNS in the bulk sample
using TEM due to the ultrathin profile of the GNSs and the
interference from the matrix. Raman spectroscopy is sensi-
tive to carbonaceous materials and offers a reliable tool to

Fig. 6 The intensity ratio of (111) to (200) at different milling times

Fig. 7 The evolution of crystalline size for Al alloy and Al-GNSs powder mixtures at different milling times
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Fig. 8 The evolution of lattice strain for Al alloy and Al-GNSs powder mixtures at different milling times

Fig. 9 TEM micrographs of the produced (a) Al alloy, and (b) Al-GNSs composite. Grains are indicated using dashed circles; highly deformed
regions are marked using solid circles. c The Raman mapping of G band on the Al-GNSs composite
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probe the GNSs (Ferrari and Basko 2013). The Raman scan-
ning results of G band are shown in Fig. 9 (c), in which the
bright areas represent the presence of GNSs. It is seen that
GNSs are well distributed among aluminium matrix.

Hardness
As shown in Fig. 10, the hardness of the hot-pressed Al
alloy averages at 81.2 HV. The hardness of Al-GNSs com-
posite is 115.1% higher and reaches 174.7 HV. This can be
understood by considering the presence of GNSs, grain re-
finement, Orowan strengthening mechanism, the effect of
thermal mismatch. The presence of GNSs is difficult to de-
form and hinders the movement of dislocation
(Pérez-Bustamante et al. 2014; Liu et al. 2016). The grain
size of the composite is refined and more uniform, which
contributes to the increased dislocation and hardness as
well. In this regard, Hall-Petch equation was derived to ex-
press the relationship between grain size and hardness as
follows by combining with Tabor’s empirical relation-
ship H ≈ 3σ. (Petch and Iron Steel 1953; Moon et al. 2008)

H ¼ H0 þ ΔHHall−petch ¼ H0 þ 3� k ∙d−0:5 ð2Þ
where H is the overall hardness, and H0 is the hardness
of the matrix. k is a modified locking parameter,
0.068 MPa·m-0.5 (Boostani et al. 2015). The ΔHHall − petch

is estimated to be 65.8 HV by taking the grain size as
100 nm for the composite.
The matrix hardness can be further contributed by

other mechanisms, as expressed in Eq. (3):

H0 ¼ H�
0 þ ΔHOrowan þ ΔHCTE þ ΔHL ð3Þ

where H�
0 is the intrinsic hardness of the matrix.

ΔHOrowan, ΔHCTE, and ΔHL represent the contribution
from the Orowan strengthening, thermal mismatch
mechanism and load-bearing effect, respectively.
The contribution of the dislocation and the im-

penetrable GNSs to hardness can be explained using
Orowan strengthening mechanism as follows (Moon
et al. 2008):

ΔHOrowan ¼ 3√3
Gb
λ

ð4Þ

where G and b represent the shear modulus of the alumin-
ium matrix (26.2 GPa (Khodabakhshi et al. 2017)) and Bur-
gers vector (0.286 nm (Khodabakhshi et al. 2017))
respectively; and λ is the interparticle spacing between the
dispersoids (taken as 100 nm). The ΔHOrowan is calculated
to be 39.7 HV.
Another contributing mechanism is from the thermal

mismatch between the GNSs (1 × 10− 6 /K) and the alu-
minium matrix (~ 23.6 × 10− 6 /K). The hardness increase
ΔHCTE could be expressed as (Khodabakhshi et al.
2017):

ΔHCTE ¼ 3αGb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12ΔTΔC f v
bdp

s

ð5Þ

where α is a proportional constant (~ 1.25), ΔT is the
temperature difference between the sintering
temperature and the ambient temperature (475 K). fv is
the volume fraction of GNSs (1%). The particle size is
selected to be 5 μm. It is estimated that the contribution
from this mechanism is limited and only 2.7 HV is
obtained.

Fig. 10 The mean Vickers hardness of the synthesized Al alloy and Al-GNSs bulk materials
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The hardness enhancement attributed to load bear-
ing could be estimated using the following Eq. (6)
(Khodabakhshi et al. 2017):

ΔHL ¼ 3
f vσm
2

ð6Þ

where σm represents the yield strength of the matrix. σm is
not measured in this study, but normally falls in the range
of 100–300 MPa for the aluminium alloy. The ΔHL is esti-
mated to be less than 1 HV, which is neglectable.
Therefore, the hardness of the Al-GNSs composite is pre-

dicted to be 189.4 HV by taking all these effects into ac-
count, which is higher than the measured value of
174.4 HV. This could be owing to the presence of defects
(such as pores), agglomeration of GNSs, and simplified ex-
pressions in Eqs. (2)–(6).

Conclusions

1) The ductile aluminium particles are firstly flattened
at the initial stage of the ball milling, and then
fractured and rewelded into equiaxed particles. The
addition of the GNSs accelerates the flattening and
fracturing, and a smaller particle size is achieved for
the composite powder.

2) The XRD analysis reveals that the crystalline size
decreases and the lattice strain increases with the
progress of the ball milling.

3) The I(111)/I(200) firstly falls to a minimum value
and then recovers to the initial level, indicating the
creation and elimination of texture during the ball
milling, which is consistent with the SEM
observation results.

4) The hardness of Al-GNSs composite is 115.1%
higher than that of Al alloy, which is mainly attrib-
uted to the presence of hard GNSs, grain refine-
ment and Orowan strengthening.
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