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Linear and non-linear vibration analysis of
moderately thick isosceles triangular FGPs
using a triangular finite p-element
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Abstract

Background: The geometrically non-linear formulation based on Von-Karman’s hypothesis is used to study the free
vibration isosceles triangular plates by using four types of mixtures of functionally graded materials (FGMs - AL/
AL2O3, SUS304/Si3N4, Ti- AL-4V/Aluminum oxide, AL/ZrO2). Material properties are assumed to be temperature
dependent and graded in the thickness direction according to power law distribution.

Methods: A hierarchical finite element based on triangular p-element is employed to define the model, taking into
account the hypotheses of first-order shear deformation theory. The equations of non-linear free motion are
derived from Lagrange's equation in combination with the harmonic balance method and solved iteratively using
the linearized updated mode method.

Results: Results for the linear and nonlinear frequencies parameters of clamped isosceles triangular plates are
obtained. The accuracy of the present results are established through convergence studies and comparison with
results of literature for metallic plates. The results of the linear vibration of clamped FGMs isosceles triangular plates
are also presented in this study.

Conclusion: The effects of apex angle, thickness ratio, volume fraction exponent and mixtures of FGMs on the backbone
curves and mode shape of clamped isosceles triangular plates are studied. The results obtained in this work reveal that
the physical and geometrical parameters have a important effect on the non-linear vibration of FGMs triangular plates.

Keywords: The mixtures effect of Ceramic-Metal, Linear and Non-linear vibration, Moderately thick FGM plates,
p-version of finite element method

Background
In recent years, the geometrically non-linear vibration of
functionally graded Materials (FGMs) for different struc-
tures has acquired great interest in many researches. In
1984, The concept of the FGMs was introduced in Japan
by scientific researchers (Koizumi 1993; Koizumi 1997).
FGMs are composite materials which are microscopically
inhomogeneous. The mechanical properties of FGMs are
expressed with mathematical functions, and assumed to
vary continuously from one surface to the other.
Since the variation of mechanical properties of FGM is

nonlinear, therefore, studies based on the nonlinear
deformation theory is required for these type of mate-
rials. Many works have studied the static and dynamic

nonlinear behavior of functionally graded plates with
various shapes. The group of researchers headed by
(Reddy and Chin 1998; Reddy et al. 1999; Reddy 2000)
have done a lot of numerical and theoretical work on FG
plates under several effects (thermoelastic response, axi-
symmetric bending and stretching, finite element
models, FSDT-plate and TSDT-plate). Woo & Meguid
(2001) analyzed the nonlinear behavior of functionally
graded shallow shells and thin plates under temperature
effects and mechanical loads. The analysis of nonlinear
bending of FG simply supported rectangular plates sub-
missive to thermal and mechanical loading was studied
by (Shen 2002). (Huang & Shen 2004) applied the per-
turbation technique to nonlinear vibration and dynamic
response of FG plates in a thermal environment. Chen
(2005) investigated the large amplitude vibration of FG
plate with arbitrary initial stresses based on FSDT. An
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analytical solution was proposed by Woo et al. 2006 to
analyzed the nonlinear vibration of functionally graded
plates using classic plate theory. Allahverdizadeh et al.
(2008a, 2008b) have studied the non-linear forced and
free vibration analysis of circular functionally graded
plate in thermal environment. The p-version of the FEM
has been applied to investigate the non-linear free vibra-
tion of elliptic sector plates and functionally graded sec-
tor plates by (Belalia & Houmat 2010; 2012). Hao et al.
2011 analyzed the non-linear vibration of a cantilever
functionally graded plate based on TSDT of plate and
asymptotic analysis and perturbation method. Duc &
Cong 2013 analyzed the non-linear dynamic response of
imperfect symmetric thin sandwich FGM plate on elastic
foundation. Yin et al. 2015 proposed a novel approach
based on isogeometric analysis (IGA) for the geometric-
ally nonlinear analysis of functionally graded plates
(FGPs). the same approach (IGA) and a simple first-
order shear deformation plate theory (S-FSDT) are used
by Yu et al. 2015 to investigated geometrically nonlinear
analysis of homogeneous and non-homogeneous function-
ally graded plates. Alinaghizadeh & Shariati 2016, investi-
gated the non-linear bending analysis of variable thickness
two-directional FG circular and annular sector plates rest-
ing on the non-linear elastic foundation using the gen-
eralized differential quadrature (GDQ) and the
Newton–Raphson iterative methods.
The p-version FEM has many advantages over the

classic finite element method (h-version), which includes
the ability to increase the accuracy of the solution with-
out re-defining the mesh (Han & Petyt 1997; Ribeiro
2003). This advantage is suitable in non-linear study
because the problem is solved iteratively and the non-
linear stiffness matrices are reconstructed throughout
each iteration. Using the p-version with higher order
polynomials, the structure is modeled by one element
while satisfying the exactitude requirement. In p-version,
the point where the maximum amplitude is easy to find
it as there is a single element, contrary to the h-version
this point must be sought in every element of the mesh
which is very difficult. The advantages of the p-version
mentioned previously, make it more powerful to the
nonlinear vibration analysis of plates. So far, no work
has been published to the study of linear and nonlinear
vibration of FGMs isosceles triangular plate by using the
p-version of FEM.
In the present work, the non-linear vibration ana-

lysis of moderately thick FGMs isosceles triangular
plates was investigated by a triangular finite p-elem-
ent. The shape functions of triangular finite p-element
are obtained by the shifted orthogonal polynomials of
Legendre. The effects of rotatory inertia and trans-
verse shear deformations are taken into account
(Mindlin 1951). The Von-Karman hypothesis are used

in combination with the harmonic balance method
(HBM) to obtained the motion equations. The result-
ant equations of motion are solved iteratively using
the linearized updated mode method. The exactitude
of the p-element is investigated with a clamped me-
tallic triangular plate. Comparisons are made between
current results and those from published results. The
effects of thickness ratio, apex angle, exponent of vol-
ume fraction and mixtures of FGMs on the backbone
curves and mode shape of clamped isosceles triangu-
lar plates are also studied.

Methods
Consider a moderately thick isosceles triangular plate
with the following geometrical parameters thickness
h, base b, height a and apex angle β (Fig. 1). The
triangular p-element is mapped to global coordinates
from the local coordinates ξ and η. The differential
relationship between the two coordinates systems is
given as a function of the Jacobian matrix ( J ) by

∂
∂ξ
∂
∂η

8>><>>:
9>>=>>; ¼ J

∂
∂x
∂
∂y

8><>:
9>=>; ð1Þ

where J is given by

J ¼
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

2664
3775 ¼

b 0

b=2 b=2tg
β

2

� �" #
ð2Þ

In first-order shear deformation plate theory, the
displacements (u, v and w) at a point with coordinate
(x, y, z) from the median surface are given as functions of

Fig. 1 Geometry of isosceles triangular plate

Belalia Mechanics of Advanced Materials and Modern Processes  (2017) 3:4 Page 2 of 13



midplane displacements (u0, v0, w) and independent rota-
tions (θx and θy) about the x and y axes as

u x; y; z; tð Þ ¼ u0 x; y; tð Þ þ zθy x; y; tð Þ
v x; y; z; tð Þ ¼ v0 x; y; tð Þ−zθx x; y; tð Þ
w x; y; z; tð Þ ¼ w x; y; tð Þ

ð3Þ

The in-plane displacements (u, v) and out-of-plane
displacements (w, θx and θy) will be expressed using the
p-version FEM as

u
v

� �
¼ N ξ; ηð Þ 0

0 N ξ; ηð Þ
� �

qu
qv

� �
ð4Þ

w
θy
θx

8<:
9=; ¼

N ξ; ηð Þ 0 0
0 N ξ; ηð Þ 0
0 0 N ξ; ηð Þ

24 35 qw
qθy
qθx

8<:
9=;

ð5Þ

where qu, qv are the vectors of generalized in-plane dis-
placements, qw, qθy and qθx are the vectors of generalized

transverse displacement and rotations, respectively,
N(ξ, η) are the hierarchical shape functions of triangular
p-element (Belalia & Houmat 2010).
Using FSDT of plate in combination with Von-Karman

hypothesis, the nonlinear strain–displacement relationships
are expressed as

εf g ¼ εL
� 	þ εNL

� 	 ð6Þ

where the linear and the non-linear strains can be
expressed as,

εL
� 	 ¼ εLP

0

� �
þ zεb

εs

� �
and εNL

� 	 ¼ εNL
P
0

� �
ð7Þ

the components of linear and the non-linear strains
given in Eq. (7) are defined as

εLP
� 	 ¼

∂u
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∂v
∂y

∂u
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The differential relationship used in Eqs. 8–9 is
obtained by inversing Eq. 1 as

∂
∂x
∂
∂y

8><>:
9>=>; ¼ J−1

∂
∂ξ
∂
∂η

8>><>>:
9>>=>>; ð10Þ

Table 1 Mechanical properties of FGMs components Yang et al.
(2003) and Zhao et al. (2009)

Material Properties

E (109 N/m2) ν ρ (kg/m3)

Aluminium (Al) 70.00 0.30 2707

Alumina (Al2O3) 380.00 0.30 3800

Stainless steel SUS304 207.78 0.3177 8166

Silicon nitride Si3N4 322.27 0.24 2370

Ti-6AL-4 V 105.7 0.2981 4429

Aluminum oxide 320.24 0.26 3750

Zirconia (ZrO2) 151.00 0.30 3000

Table 2 Convergence of the first three linear frequency
parameters for clamped metallic isosceles triangular plate (β = 90°)

h/b Mode p

6 7 8 9 10 11

0.05 Ω1 166.3 164.6 164.4 164.3 164.3 164.3

Ω2 277.2 265.7 261.9 261.1 260.9 260.9

Ω3 330.4 321.2 316.3 314.3 313.8 313.7

0.1 Ω1 128.2 127.9 127.9 127.9 127.9 127.9

Ω2 195.1 191.2 190.5 190.2 190.2 190.2

Ω3 227.9 225.0 223.6 223.3 223.2 223.2

0.15 Ω1 100.3 100.2 100.2 100.2 100.2 100.2

Ω2 146.1 144.3 144.1 144.0 144.0 144.0

Ω3 168.7 167.4 166.8 166.7 166.7 166.7

Table 3 Comparison of the first three linear frequency
parameters for clamped metallic isosceles triangular plate
h/b Mode β

30° 60° 90°

Present Liew et al.
(1998)

Present Liew et al.
(1998)

Present Liew et al.
(1998)

0.05 Ω1 51.55 51.55 91.86 91.86 164.3 164.4

Ω2 80.60 80.61 167.5 167.5 260.9 260.9

Ω3 109.5 109.5 167.5 167.5 313.7 313.7

0.1 Ω1 46.35 46.35 77.76 77.79 127.9 127.9

Ω2 69.82 69.81 132.3 132.3 190.2 190.3

Ω3 92.16 92.17 132.3 132.3 223.1 223.2

0.15 Ω1 40.55 40.55 64.58 64.59 100.2 100.2

Ω2 59.07 59.07 104.7 104.7 143.0 144.0

Ω3 76.12 76.15 104.7 104.7 166.7 166.7
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The strain energy ES and kinetic energy EK of the
functionally graded moderately thick plate can
expressed as

ES ¼ 1
2
∬ εp
� 	T

Aij

 �

εp
� 	þ εp

� 	T
Bij

 �

εbf g
h

þ εbf gT Bij

 �

εp
� 	þ εbf gT Dij


 �
εbf g

þ εsf gT Sij
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εsf g
i
dxdy ð11Þ
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where [Aij], [Bij] and [Dij], are extensional, bending-
extensional and bending stiffness constants of the FG
plate and are given by

Aij;Bij;Dij

 � ¼ Z

−h
2

þh
2

Qij 1; z; z
2

� 

dz i; j ¼ 1; 2; 6ð Þ ð13Þ

Sij

 � ¼ k

Z
−h
2

þh
2

Qijdz i; j ¼ 4; 5ð Þ ð14Þ

where k is a shear correction factor and is equal to π2/12

Table 4 The first three linear frequency parameters of clamped FG AL/AL2O3 isosceles triangular plate

β h/b Mode n

ceramic 0.1 0.5 1 2 5 10 metal

30° 0.05 ΩL1 5.0681 4.8827 4.3399 3.9585 3.6367 3.4112 3.2521 2.5773

ΩL2 7.9247 7.6385 6.8050 6.2214 5.7244 5.3517 5.0840 4.0300

ΩL3 10.768 10.382 9.2453 8.4385 7.7440 7.2297 6.8741 5.4761

0.1 ΩL1 9.1144 8.7992 7.8656 7.1908 6.5871 6.0926 5.7606 4.6349

ΩL2 13.729 13.267 11.904 10.916 10.009 9.1978 8.6491 6.9818

ΩL3 18.122 17.522 15.727 14.401 13.158 12.049 11.330 9.2160

0.15 ΩL1 11.960 11.571 10.404 9.5364 8.7114 7.9458 7.4521 6.0824

ΩL2 17.422 16.873 15.237 14.013 12.812 11.599 10.814 8.8598

ΩL3 22.452 21.759 19.656 18.046 16.436 14.823 13.822 11.418

60° 0.05 ΩL1 9.0322 8.7089 7.7700 7.1137 6.5499 6.1081 5.7894 4.5931

ΩL2 16.471 15.893 14.197 12.987 11.922 11.066 10.472 8.3760

ΩL3 16.471 15.895 14.220 13.039 11.998 11.121 10.501 8.3760

0.1 ΩL1 15.290 14.785 13.290 12.200 11.179 10.225 9.5914 7.7757

ΩL2 26.023 25.197 22.727 20.880 19.081 17.304 16.159 13.233

ΩL3 26.023 25.197 22.734 20.895 19.098 17.307 16.159 13.233

0.15 ΩL1 19.048 18.460 16.696 15.361 14.020 12.629 11.751 9.6867

ΩL2 30.889 29.973 27.193 25.036 22.785 20.357 18.876 15.708

ΩL3 30.889 29.974 27.208 25.070 22.840 20.408 18.904 15.708

90° 0.05 ΩL1 16.158 15.597 13.957 12.793 11.760 10.885 10.273 8.2171

ΩL2 25.654 24.788 22.260 20.454 18.802 17.278 16.227 13.046

ΩL3 30.842 29.806 26.705 24.420 22.326 20.519 19.338 15.684

0.1 ΩL1 25.141 24.354 22.002 20.236 18.487 16.701 15.561 12.785

ΩL2 37.407 36.275 32.868 30.265 27.597 24.749 22.981 19.022

ΩL3 43.879 42.565 38.556 35.441 32.237 28.877 26.830 22.314

0.15 ΩL1 29.543 28.682 26.067 24.026 21.861 19.453 17.991 15.023

ΩL2 42.470 41.260 37.557 34.620 31.440 27.861 25.732 21.597

ΩL3 49.166 47.778 43.507 40.090 36.371 32.198 29.726 25.002
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Q11 ¼ Q22 ¼
E zð Þ

1−ν2 zð Þ Q12 ¼ ν zð ÞQ11 Q44 ¼ Q55

¼ Q66 ¼
E zð Þ

2 1þ ν zð Þð Þ
ð15Þ

I1; I3ð Þ ¼
Z

−h=2

þh=2

ρ zð Þ 1; z2
� 


dz ð16Þ

The material properties E(z),ν(z), and ρ(z) of the func-
tionally graded triangular plate assumed to be graded
only in the thickness direction according to a simple
power law distribution in terms of the volume fraction
of the constituents which is expressed a

E zð Þ ¼ Ec−Emð Þ 1
2
þ z
h

� �n

þ Em ð17Þ

ν zð Þ ¼ νc−νmð Þ 1
2
þ z
h

� �n

þ νm ð18Þ

ρ zð Þ ¼ ρc−ρm
� 
 1

2
þ z
h

� �n

þ ρm ð19Þ

where c and m index designate the ceramic and the
metal, respectively, n is the exponent of the volume fraction
(n ≥ 0), z is the thickness coordinate variable, E elastic
modulus, ρ mass density, h is the thickness of the plate and
ν is the Poisson’s ratio. The bottom layer of the functionally
graded triangular plate is fully metallic material and the top
layer is fully ceramic material. The constants of material for
four types of FGMs considered in this study (AL/AL2O3,-
SUS304/Si3N4, Ti-6AL-4 V/Aluminum oxide, AL/ZrO2)
are shown in Table 1.
Inserting Eqs. (11–12) in Lagrange’s equations the

equations of free motion are obtained as:

Table 5 The first three linear frequency parameters of clamped FG SUS304/Si3N4 isosceles triangular plate

β h/b Mode n

ceramic 0.1 0.5 1 2 5 10 metal

30° 0.05 ΩL1 5.8366 5.1789 4.0506 3.5610 3.2026 2.9134 2.7785 2.5747

ΩL2 9.1371 8.1064 6.3395 5.5721 5.0090 4.5535 4.3414 4.0244

ΩL3 12.427 11.024 8.6199 7.5746 6.8066 6.1846 5.8959 5.4669

0.1 ΩL1 10.564 9.3705 7.3225 6.4269 5.7626 5.2220 4.9759 4.6207

ΩL2 15.956 14.149 11.053 9.6966 8.6850 7.8582 7.4845 6.9544

ΩL3 21.102 18.708 14.609 12.811 11.465 10.363 9.8682 9.1743

0.15 ΩL1 13.954 12.374 9.6609 8.4647 7.5657 6.8293 6.5019 6.0512

ΩL2 20.390 18.075 14.106 12.353 11.028 9.9374 9.4558 8.8055

ΩL3 26.332 23.336 18.2050 15.934 14.212 12.793 12.170 11.341

60° 0.05 ΩL1 10.423 9.2477 7.2314 6.3544 5.7096 5.1871 4.9454 4.5855

ΩL2 19.056 16.902 13.210 11.601 10.413 9.4482 9.0049 8.3552

ΩL3 19.056 16.902 13.211 11.603 10.415 9.4492 9.0053 8.3552

0.1 ΩL1 17.805 15.790 12.331 10.810 9.6719 8.7402 8.3229 7.7404

ΩL2 30.433 26.975 21.052 18.440 16.469 14.849 14.131 13.156

ΩL3 30.433 26.975 21.053 18.441 16.470 14.850 14.132 13.156

0.15 ΩL1 22.345 19.812 15.456 13.522 12.053 10.845 10.318 9.6205

ΩL2 36.377 32.233 25.130 21.971 19.558 17.564 16.700 15.581

ΩL3 36.377 32.234 25.132 21.975 19.562 17.566 16.701 15.581

90° 0.05 ΩL1 18.711 16.598 12.972 11.388 10.216 9.2627 8.8272 8.1943

ΩL2 29.792 26.422 20.641 18.112 16.227 14.689 13.992 12.998

ΩL3 35.858 31.808 24.843 21.792 19.508 17.650 16.8101 15.621

0.1 ΩL1 29.448 26.111 20.374 17.831 15.906 14.324 13.631 12.704

ΩL2 43.964 38.964 30.385 26.577 23.679 21.289 20.248 18.882

ΩL3 51.630 45.755 35.676 31.196 27.781 24.961 23.736 22.141

0.15 ΩL1 34.858 30.906 24.089 21.036 18.693 16.762 15.937 14.894

ΩL2 50.223 44.496 34.666 30.273 26.895 24.098 22.903 21.397

ΩL3 58.180 51.535 40.150 35.064 31.148 27.898 26.509 24.766
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M

 � €qu

€qv

� �
þ K

 � qu

qv

� �
þ ½ K^ þ K̂ �

qw
qθy
qθx

8<:
9=; ¼ 0 ð20Þ

M½ �
€qw
€qθy
€qθx

8<:
9=;þ ~K þ K


 � qw
qθy
qθx

8<:
9=;þ 2K̂þ K � qu

qv

� �
¼ 0

^"

ð21Þ

The vector of generalized displacement in free motion
will be given as

qw
qθy
qθx

8<:
9=; ¼

Qw

Qθy
Qθx

8<:
9=;cos ωtð Þ ¼ Qcos ωtð Þ ð22Þ

By neglecting the in-plane inertia, and taking into ac-
count the effects of the transverse shear deformation

and inertia of rotation. Inserting Eqs. (20) and (22) into
Eq. (21) and applying the HB-method, the final equation
of free motion are of the form

½−ω2M þ K−K
^T

K
−1

K
^ �

Qw

Qθy
Qθx

8<:
9=;

þ 3
4

Ke −2K̂ T
K

−1
K̂ 0 0

0 0 0

0 0 0

264
375 Qw

Qθy
Qθx

8<:
9=; ¼ 0

ð23Þ

Where M is the out-of-plane inertia matrices, K , K and K
^

are the extension, bending and coupled extension-rotation
linear stiffness matrices, ~K and K̂ represent the nonlinear
stiffness matrices. These matrices are given in Appendix A.
The system of equations given in Eq. (23) are solved

iteratively using the linearized updated mode method. This

Table 6 The first three linear frequency parameters of clamped FG Ti-6AL-4 V/Aluminum oxide isosceles triangular plate

β h/b Mode n

ceramic 0.1 0.5 1 2 5 10 metal

30° 0.05 ΩL1 4.8290 4.6023 4.0178 3.6640 3.3821 3.1477 2.9915 2.5775

ΩL2 7.5568 7.2037 6.2958 5.7453 5.3021 4.9231 4.6728 4.0305

ΩL3 10.275 9.7962 8.5595 7.8050 7.1942 6.6742 6.3363 5.4770

0.1 ΩL1 8.7224 8.3224 7.2851 6.6421 6.1042 5.6259 5.3293 4.6364

ΩL2 13.162 12.565 11.018 10.053 9.2288 8.4668 8.0039 6.9847

ΩL3 17.397 16.613 14.569 13.281 12.167 11.137 10.527 9.2205

0.15 ΩL1 11.497 10.982 9.6405 8.7886 8.0410 7.3389 6.9297 6.0858

ΩL2 16.783 16.041 14.109 12.873 11.761 10.679 10.060 8.8657

ΩL3 21.659 20.709 18.216 16.602 15.134 13.708 12.913 11.426

60° 0.05 ΩL1 8.6182 8.2172 7.1865 6.5606 6.0523 5.6101 5.3205 4.5939

ΩL2 15.743 15.016 13.139 11.986 11.033 10.193 9.6614 8.3781

ΩL3 15.743 15.017 13.149 12.006 11.058 10.209 9.6685 8.3781

0.1 ΩL1 14.679 14.018 12.303 11.225 10.290 9.4121 8.8890 7.7795

ΩL2 25.055 23.944 21.047 19.198 17.544 15.951 15.037 13.242

ΩL3 25.055 23.944 21.049 19.201 17.547 15.951 15.037 13.242

0.15 ΩL1 18.378 17.573 15.468 14.107 12.863 11.641 10.959 9.6939

ΩL2 29.880 28.591 25.201 22.974 20.887 18.802 17.675 15.721

ΩL3 29.880 28.591 25.209 22.991 20.911 18.818 17.682 15.721

90° 0.05 ΩL1 15.453 14.743 12.911 11.784 10.845 10.002 9.4702 8.2194

ΩL2 24.582 23.465 20.582 18.795 17.269 15.851 14.981 13.051

ΩL3 29.577 28.236 24.742 22.547 20.676 18.974 17.953 15.691

0.1 ΩL1 24.232 23.165 20.377 18.586 16.965 15.385 14.493 12.794

ΩL2 36.137 34.565 30.445 27.765 25.284 22.822 21.468 19.038

ΩL3 42.422 40.584 35.747 32.574 29.626 26.711 25.127 22.333

0.15 ΩL1 28.615 27.392 24.165 22.028 19.998 17.948 16.857 15.037

ΩL2 41.198 39.447 34.821 31.734 28.767 25.752 24.171 21.619

ΩL3 47.715 45.694 40.348 36.768 33.310 29.790 27.951 25.028
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method needs two type of amplitudes, the first is the spe-
cific amplitude which depends on the plate thickness, the
second is the maximum amplitude to be calculated for each
iteration. The new system of equations is solved using any
known technique with an accuracy of around (e.g.10−5).
The maximum amplitude wmax is evaluated as

wmax ¼ N ξ0; η0
� 


0 0

 � Qw

Qθy
Qθx

8<:
9=;

i ¼ 1; 2;… pþ 1ð Þ pþ 2ð Þ=2ð Þ
ð24Þ

Results
Study of convergence and comparison for linear vibration
In this part a convergence and comparison study is
made for the linear vibration of clamped metallic

isosceles triangular plates to validate the current formu-
lation and methods proposed.
Table 2 shows the convergence of the first three

frequencies parameter Ω ¼ ωb2
ffiffiffiffiffiffiffiffiffiffiffi
ρh=D

p
of metallic

clamped isosceles triangular plate (β = 90°) for the
three following different thickness ratio (h/b = 0.05,
0.1 and 0.15). The convergence of results can be ac-
celerated by increasing the polynomial order p from 6
to 11. To validate the accuracy of the present solu-
tion, a comparison, listed in Table 3, is made between
the present results and the results of p-version Ritz
method (Liew et al. 1998) of first three linear fre-
quency parameters for metallic clamped isosceles tri-
angular plate, the geometric parameters of this plate
are taken (β = 30°, 60° and 90°) for apex angle and (h/
b = 0.05, 0.1 and 0.15) for thickness ratio. From this
table, it can be found that the present results are in
good agreement with the published results. From this

Table 7 The first three linear frequency parameters of clamped FG AL/ZrO2 isosceles triangular plate

β h/b Mode n

ceramic 0.1 0.5 1 2 5 10 metal

30° 0.05 ΩL1 3.0021 2.9572 2.8416 2.7888 2.7883 2.8317 2.8112 2.5773

ΩL2 4.6942 4.6257 4.4505 4.3711 4.3692 4.4266 4.3896 4.0299

ΩL3 6.3787 6.2869 6.0482 5.9351 5.9251 5.9981 5.9503 5.4760

0.1 ΩL1 5.3989 5.3268 5.1359 5.0398 5.0174 5.0496 5.0015 4.6348

ΩL2 8.1325 8.0301 7.7590 7.6194 7.5751 7.5901 7.5050 6.9816

ΩL3 10.735 10.604 10.250 10.056 9.9768 9.9757 9.8654 9.2158

0.15 ΩL1 7.0850 7.0016 6.7739 6.6473 6.5896 6.5742 6.4964 6.0823

ΩL2 10.320 10.207 9.8999 9.7224 9.6219 9.5516 9.4211 8.8596

ΩL3 13.300 13.161 12.769 12.526 12.368 12.251 12.086 11.418

60° 0.05 ΩL1 5.3502 5.2734 5.0781 4.9894 4.9857 5.0425 4.9975 4.5931

ΩL2 9.7566 9.6227 9.2739 9.1052 9.0780 9.1532 9.0675 8.3758

ΩL3 9.7566 9.6232 9.2816 9.1224 9.0985 9.1668 9.0741 8.3758

0.1 ΩL1 9.0573 8.9471 8.6541 8.4990 8.4407 8.4359 8.3353 7.7755

ΩL2 15.415 15.244 14.774 14.500 14.358 14.268 14.081 13.233

ΩL3 15.415 15.244 14.777 14.509 14.362 14.270 14.082 13.233

0.15 ΩL1 11.283 11.165 10.838 10.642 10.517 10.414 10.266 9.6865

ΩL2 18.297 18.125 17.627 17.299 17.040 16.784 16.532 15.707

ΩL3 18.297 18.125 17.632 17.310 17.056 16.797 16.538 15.707

90° 0.05 ΩL1 9.5715 9.4422 9.1085 8.9487 8.9212 8.9816 8.8897 8.2169

ΩL2 15.196 15.003 14.502 14.254 14.185 14.215 14.050 13.045

ΩL3 18.269 18.040 17.419 17.086 16.970 17.004 16.829 15.684

0.1 ΩL1 14.892 14.732 14.291 14.033 13.882 13.769 13.580 12.785

ΩL2 22.158 21.938 21.319 20.930 20.650 20.390 20.091 19.022

ΩL3 25.992 25.741 25.014 24.537 24.177 23.847 23.505 22.313

0.15 ΩL1 17.500 17.340 16.880 16.571 16.314 16.039 15.785 15.023

ΩL2 25.157 24.943 24.305 23.848 23.428 22.966 22.596 21.596

ΩL3 29.123 28.883 28.152 27.614 27.104 26.542 26.113 25.002
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table, it can be found that the present results are in
good agreement with the published results.

Linear vibration of FGMs isosceles triangular plate
This part of study present the linear free vibration of
thick FGMs isosceles triangular plates designed by
four different mixtures (FGM 1: AL/AL2O3, FGM 2:
SUS304/Si3N4, FGM 3: Ti-6AL-4 V/Aluminum oxide
and FGM 4: AL/ZrO2). Tables 4, 5, 6, 7 display the

first three linear frequency parameters ΩL ¼ ωb2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ρm 1−ν2ð Þ=Em

p
for a clamped FGMs isosceles tri-

angular plate, three apex angles (β = 30°, 60° and 90°)
and three thickness ratio (h/b = 0.05, 0.1 and 0.15) are
considered. The exponent of volume fraction vary from 0
to ∞ and it takes the values presented in tables. The re-
sults presented in this section comes to enrich the results
of literatures. The tables visibly show that the linear fre-
quency parameters is proportional to the angle and thick-
ness and inversely proportional to the volume fraction
exponent. For the triangular plate with apex angle (β
= 60°), it is noted that the second and third modes are
double modes for cases purely metal or purely ceramic,
but varied the volume fraction exponent there is a small
spacing between the two modes, the maximum spacing is
the round of n = 1.

Non-linear vibration of isosceles triangular FG-plate
The investigation of the effects of the FGM mixtures,
volume fraction exponent, thickness ratio, apex angle
and boundary conditions on the hardening behavior
are investigated in this part. The resultant backbone
curves which shows the change in the nonlinear-to-
linear frequency ratio ΩNL/ΩL according to maximum
amplitude-to-thickness ratios |wmax|/h are plotted in
Figs. 2, 3, 4, 5 for clamped FG isosceles triangular
plate. In Fig. 2, four different mixtures of FGM

(FGM 1: AL/AL2O3, FGM 2: SUS304/Si3N4, FGM 3:
Ti-6AL-4 V/Aluminum oxide and FGM 4: AL/ZrO2)
are considered for volume fraction exponent n = 0.5.
The thickness ratio and the apex angle of FG
isosceles triangular plate are taken respectively as h/b
= 0.1, β = 60°. The effect of apex angle and thickness
on the backbone curve for the first mode of the func-
tionally garded AL/AL2O3 clamped triangular plate
with (β = 60°) and n =1 are presented in Figs. 3, 4.
The effects of mixtures, thickness ratio and apex
angle are clearly shown on the plot of these figures.
The plots clearly show that if the thickness and angle
increases the effects of the hardening behavior in-
creases automatically. Also, the nonlinear vibration of
the triangular plate with mixture FGM 4 presents the
greatest hardening behavior compared to others mix-
tures of FGM.
The boundary conditions effects on the fundamental

backbone curves for FG AL/AL2O3 isosceles triangular

Fig. 4 The apex angle effects on the fundamental backbone curves for
clamped FG AL/AL2O3 isosceles triangular plate (h/b= 0.1and n =1)

Fig. 3 The thickness effects on the fundamental backbone curves for
clamped FG AL/AL2O3 isosceles triangular plate (β = 60° and n =1)

Fig. 2 Material mixtures effects on the fundamental backbone
curves for clamped FG triangular plate (β = 60°, h/b = 0.1, n = 0.5)
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plate are investigated in Fig. 5. Four different boundary
conditions are considered in this part of study SSS, CSS,
SCC and CCC (S: simply supported edge and C :
clamped edge). The volume fraction exponent, thickness
ratio and the apex angle of FG isosceles triangular plate
are taken respectively as n =1, h/b = 0.05 and β = 90°.
The figure clearly show that the FG plate with simply
supported boundary conditions presents a more accen-
tuated hardening behavior than the other boundary con-
ditions. It is noted that the hardening effect increases
when the plate becomes more free (SSS) and decreases
as the plate becomes more fixed (CCC), this difference
in the results is due to the rotation of the edges.
The variation of frequency ratio ΩNL/ΩL according to

volume fraction exponent for clamped isosceles triangu-
lar plate with four different mixtures of FGMs is shown
in Fig. 6. The exponent of volume fraction take values
from 0 to 20 and maximum amplitude-to-thickness

a

b

Fig. 8 Section of normalized non-linear fundamental mode shapes
of FG isosceles triangular plate : a) along of ξ; b) alone of η (β = 30°,
n = 1, h/b = 0.05)

Fig. 7 Material mixtures effects on the variation of the nonlinear-to-
linear fundamental frequency ratio with the volume fraction expo-
nent for clamped FG isosceles triangular plate (|wmax|/h = 1,
h/b = 0.1, β = 90°)

Fig. 6 Material mixtures effects on the variation of the nonlinear-to-
linear fundamental frequency ratio with the volume fraction expo-
nent for clamped FG isosceles triangular plate (h/b = 0.1, β = 90°)

Fig. 5 The boundary conditions effects on the fundamental
backbone curves for FG AL/AL2O3 isosceles triangular plate (β = 90°,
h/b = 0.05 and n =1)
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ratios take three values |wmax|/h = 0.6, 0.8 and 1. The
geometric parameters of the plate are (β = 90°) and h/b
=0.1. Noted that the shape of the graph is similar for
three values of the maximum amplitude-to-thickness ra-
tios of this fact and to understand the phenomenon and
good interpretation, Fig. 7 plot only the results of the
largest value of the maximum amplitude |wmax|/h = 1. It
can be seen for volume fraction exponent which varied
between n = 0 to n = 4 the hardening effect is maximum
for the first mixture (AL/AL2O3), for values n ≥ 4 the
second mixture (which SUS304/Si3N4) presents the
greatest hardening effect. For third and fourth mixtures
(Ti-6AL-4 V/Aluminum oxide and AL/ZrO2) the shape
of the two curves are parallel with superiority of the
values obtained for the fourth mixture FGM 4. Note that
the peak of the hardening behavior for four curves is ob-
tained for volume fraction exponent n = 1, at which cor-
responds to a linear variation of constituent materials of
the mixture. By comparing the spacing between curves
FGM1 (Al/Al2O3) and FGM4 (Al/ZrO2) we see clearly

the influence of physical properties of the two ceramic
(Al2O3 and ZrO2) on hardening behavior. This influence
is not due to metal (Al) since the same metal is used in
both mixtures.
Figures 8, 9, 10 shows the normalized non-linear fun-

damental mode shape of isosceles triangular plate for
four different mixtures of FGM along the line passes
through the point of maximum amplitude (ξ0, η0).
The mode shape are normalized by dividing by their
own maximum displacement. Three apex angles and
thickness ratio of FG plate are considered (β =
30°, 60° and 90°), (h/b = 0.05) respectively, volume
fraction exponent n = 1 and the maximum amplitude
|wmax|/h = 1. It can see from these graphs that the
displacement is maximum for the FGM 2 (SUS304/
Si3N4) then comes FGM3 (Ti-6Al-4 V/Aluminum
oxide) with a percentage of displacement 83% of max-
imum displacement, FGM 1 (AL/AL2O3) with 72%
and lastly FGM 4 (AL/ZrO2) with 64%. The normal-
ized non-linear of second and third modes shape of

a

b

Fig. 10 Section of normalized non-linear fundamental mode shapes
of FG isosceles triangular plate: a) along of ξ; b) alone of η (β = 90°,
n = 1, h/b = 0.05)

a

b

Fig. 9 Section of normalized non-linear fundamental mode shapes
of FG isosceles triangular plate: a) along of ξ; b) alone of η (β = 60°,
n = 1, h/b = 0.05)

Belalia Mechanics of Advanced Materials and Modern Processes  (2017) 3:4 Page 10 of 13



isosceles triangular plates for the same mixtures used
early are plotted in Figs. 11, 12, respectively. The geo-
metric parameters used are h/b = 0.05, β = 90° and
|wmax|/h = 0.8. It can be seen from this plot the effect
of mixtures on normalized non-linear first three fun-
damental mode shape of isosceles triangular plate.
This is due to fact that the composition of mixtures
contribute to various in-plane forces in the isosceles
triangular plate.

Conclusions
The non-linear free vibration of moderately thick
FGMs clamped isosceles triangular plates was analyzed
by a triangular p-element. The material properties of
the functionally graded triangular plate assumed to be
graded only in the thickness direction according to a
simple power law distribution in terms of the volume
fraction of the constituents. The shape functions of tri-
angular finite p-element are obtained by the shifted or-
thogonal polynomials of Legendre. The components of

stiffness and mass matrices were calculated using nu-
merical integration of Gauss-Legendre. The equations
of motion are obtained from Lagrange's equation in
combination with the harmonic balance method
(HBM). Results for linear and non-linear frequency for
the lowest three modes of FGMs clamped isosceles tri-
angular plates were obtained. The parametric studies
show that the boundary conditions have a great influ-
ence on the shape of the backbone curves, the harden-
ing spring effect decreases for clamped FG plate. For
simply supported FG plate and by increasing thickness
ratio and sector angle of FG plates the hardening spring
effect increases. A increase in the volume fraction ex-
ponent produces a variation in the hardening spring ef-
fect with an increasing part and another decreasing
part, the peak in the curves of the nonlinear-to-linear
fundamental frequency ratio FG triangular plate is ob-
tained around of n = 1 at which the hardening behavior
is maximum, and is obtained for AL/AL2O3 FG plate.
This value of volume fraction exponent corresponds

a

b

Fig. 12 Section of normalized non-linear third mode shapes of FG
isosceles triangular plate: a) along of ξ; b) alone of η (β = 90°,
n = 1, h/b = 0.05)

a

b

Fig. 11 Section of normalized non-linear second mode shapes of
FG isosceles triangular plate: a) along of ξ; b) alone of η (β = 90°,
n = 1, h/b = 0.05)
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to equal mixtures of metal and ceramic in the com-
position of the FG plate. Not only the hardening
behavior is influenced by this mixture but the non-
linear mode shape of FG isosceles triangular plate is
also influenced.

Appendix A

Kα;β ¼
K 2α−1;2β−1 K 2α−1;2β

K 2α;2β−1 K 2α;2β

" #
ðA:1Þ

Kα;β ¼
K 3α−2;3β−2 K3α−2;3β−1 K 3α−2;3β

K3α−1;3β−2 K3α−1;3β−1 K3α−1;3β

K3α;3β−2 K3α;3β−1 K3α;3β

24 35 ðA:2Þ

Mα;β ¼
M3α−2;3β−2 M3α−2;3β−1 M3α−2;3β

M3α−1;3β−2 M3α−1;3β−1 M3α−1;3β

M3α;3β−2 M3α;3β−1 M3α;3β

24 35 ðA:3Þ

K̂α;β ¼ K̂ 2α−1;3β−2 K̂ 2α−1;3β−1 K̂ 2α−1;3β

K̂ 2α;3β−2 K̂ 2α;3β−1 K̂ 2α;3β

" #
ðA:4Þ

K
^

α;β ¼
K
^

2α−1;3β−2 K
^

2α−1;3β−1 K
^

2α−1;3β

K
^

2α;3β−2 K
^

2α;3β−1 K
^

2α;3β

24 35 ðA:5Þ

~Kα;β ¼
~K 3α−2;3β−2 ~K 3α−2;3β−1 ~K 3α−2;3β
~K 3α−1;3β−2 ~K 3α−1;3β−1 ~K 3α−1;3β
~K 3α;3β−2 ~K 3α;3β−1 ~K 3α;3β

24 35 ðA:6Þ

The non-zero elements of the matrices M, K, K, K̂ , K
^

and ~K are expressed as

M3 α−2;3β−2 ¼
Z1
0

Z1−ξ
0

I1NαNβ Jj jdξ dη ðA:7Þ

M3 α−1;3β−1 ¼ M3 α;3β ¼
Z1
0

Z1−ξ
0

I3NαNβ Jj jdξ dη ðA:8Þ

K3α−2;3β−2 ¼
Z1
0

Z1−ξ
0

k A44
∂Nα

∂ξ
∂Nβ

∂ξ
þ A55

∂Nα

∂η
∂Nβ

∂η

� �
Jj jdξ dη

ðA:9Þ

K3α−2;3β−1 ¼ −
Z1
0

Z1−ξ
0

k A44
∂Nα

∂η
Nβ Jj jdξ dη ðA:10Þ

K3α−2;3β ¼
Z1
0

Z1−ξ
0

k A55
∂Nα

∂ξ
Nβ Jj jdξ dη ðA:11Þ

K3α−1;3β−2 ¼ −
Z1
0

Z1−ξ
0

k A44Nα
∂Nβ

∂η
Jj jdξ dη ðA:12Þ

K3α−1;3β−1 ¼
Z1
0

Z1−ξ
0

D22
∂Nα

∂η
∂Nβ

∂η
þ D66

∂Nα

∂ξ
∂Nβ

∂ξ
þ k A44NαNβ

� �
Jj jdξ dη

ðA:13Þ
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Z1
0

Z1−ξ
0

D12
∂Nα

∂η
∂Nβ
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∂η
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Jj jdξ dη
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K3α;3β−2 ¼
Z1
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Z1−ξ
0

k A55Nα
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Jj jdξ dη

ðA:16Þ

K3α;3β ¼
Z1
0

Z1−ξ
0

D11
∂Nα

∂ξ
∂Nβ

∂ξ
þ D66

∂Nα

∂η
∂Nβ

∂η
þ k A55NαNβ
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Jj jdξ dη
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K 2α−1;2β−1 ¼
Z1
0

Z1−ξ
0

A11
∂Nα

∂ξ
∂Nβ
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þ A66

∂Nα

∂η
∂Nβ
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� �
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K 2α−1;2β ¼
Z1
0

Z
01−ξ

A12
∂Nα

∂ξ
∂Nβ
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∂η
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K 2α;2β−1 ¼
Z1
0

Z1−ξ
0

A12
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∂η
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K̂ 2α−1;3β−2 ¼ 1
2

Xr
δ¼1

Z1
0

Z1−ξ
0

A11
∂Nα

∂ξ
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∂ξ
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2
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δ¼1
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