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Abstract

Background: The theory of microstretch elastic bodies was first developed by Eringen (1971, 1990, 1999, 2004). This
theory was developed by extending the theory of micropolar elastcity. Each material point in this theory has three
deformable directors.

Methods: The governing equations of a transversely isotropic microstretch material are specialized in x-z plane.
Plane wave solutions of these governing equations results into a bi-quadratic velocity equation. The four roots of the
velocity equation correspond to four coupled plane waves which are named as Coupled Longitudinal Displacement
(CLD) wave, Coupled Longitudinal Microstretch (CLM) wave, Coupled Transverse Displacement (CTD) wave and
Coupled Transverse Microrotational (CTM) wave. The reflection of Coupled Longitudinal Displacement (CLD) wave is
considered at a stress-free surface of half-space of material. The appropriate displacement components, microrotation
component and microstretch potential for incident and four reflected waves in half-space are formulated. These
solutions for incident and reflected waves satisfy the boundary conditions at a stress free surface of half-space and we
obtain a non-homogeneous system of four equations in four reflection coefficients (or amplitude ratios) along with
Snell’s law for the present model.

Results: The speeds of plane waves are computed by Fortran program of bi-quadratic velocity equation for relevant
physical constants of the material. The reflection coefficients of various reflected waves are also computed by Fortran
program of Gauss elimination method. The speeds of plane waves are plotted against angle of propagation direction
with vertical axis. The reflection coefficients of various reflected waves are plotted against the angle of incidence. These
variations of speeds and reflection coefficients are also compared with those in absence of microstretch parameters.

Conclusions: For a specific material, numerical simulation in presence as well as in absence of microstretch shows
that the coupled longitudinal displacement (CLD) wave is fastest wave and the coupled transverse microrotational
(CTM) is observed slowest wave. The coupled longitudinal microstretch (CLM) wave is an additional wave due to the
presence of microstretch in the medium. The presence of microstretch in transversely isotropic micropolar elastic
solid affects the speeds of plane waves and the amplitude ratios of various reflected waves.
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Background
The linear theory of elasticity has numerous applica-
tions in engineering structural materials. The linear elas-
ticity describes the mechanical behaviour of concrete,
wood and coal. However, the linear theory of elasticity
does not describe the behaviour of some new synthetic
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materials, for example, polymethyl-methacrylate, polythy-
lene, polyvinyl chloride. The behaviour of such material is
described by the theory of micropolar elasticity. Eringen
(1999, 2001) stated that “the range of possible materials to
be modelled by micropolar theory is very wide. It includes
anisotropic fluids, liquid crystals with rigid molecules,
rigid suspensions, magnetic fluids, clouds with dust,
muddy fluids, biological fluids, animal blood with rigid
cells, chopped fiber composites, bones, concrete with
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sand”. In elastic vibrations of high frequencies (20 kHZ-
1000 kHZ) and small wavelengths, the effect of the
microstructure in a body becomes prominent. Micropo-
lar continua is treated as a special case of microstretch
continua and the microstretch continua is treated as spe-
cial case of micromorphic continua. Eringen (1999, 2001)
developed these microcontinuum field theories. In con-
trast to classical continuum mechanics, the material
particles in these microcontinuum theories undergo an
additional micromotion corresponding to the rotation
and deformation of the material particle at the microscale.
Most of experimental research presented in aspects of
composite materials, micromechanics, cellular solids, and
biological materials may be understood via Cosserat or
Micropolar elasticity. Eringen (1999, 2001) states, “exper-
iments with micropolar constants require much precision
and elaborate instrumentation, since we are faced with
the measurement of microscopic-level quantities in high
frequency, short-wavelength regions. Therefore, experi-
mental work using micropolar theory as a basis for the
design of experimental setups (in order to measure at least
some of the many material parameters) and the interpre-
tation of measured data is still very rare”. Few promising
experimental results are available in the literature, for
example, Askar (1972), Bazant and Christensen (1972),
Gauthier and Jashman (1975), Fischer-Hjalmars (1981,
1982), Gauthier (1982), Yang and Lakes (1982), Pouget
et al. (1986) and Kiris and Inan (2008). Various other
experimental studies in micropolar continuum are done
by using micromechanical approach. For example, Lakes
(1991), De Bellis and Addessi (2014), Niu and Yan (2016)
and Hassonpour and Heppler (2017).
The theory of microstretch elastic bodies was first

developed by Eringen (1971, 1990, 1999, 2004). This
theory was developed by extending the theory of microp-
olar elastcity. Each material point in this theory has three
deformable directors. A body is treated as a microstretch
medium when the directors are restricted with breathing-
type microdeformations only. Also, the material points
of a microstretch solid possess the property of stretching
and contracting independently of their translations and
rotations. This theory removed the shortcomings between
classical elasticity and experiments. The classical elasticity
is unable to show the effects of material microstructure,
which contribute significantly to the overall deformations
in a body. For an instance, as stated by Eringen (1999), “the
classical theory of elasticity fails to produce acceptable
results in the cases of polymers, graphite, asphalt, human
bones, composite materials reinforced with chopped elas-
tic fibres and porous media saturated with gas or inviscid
liquid”. Due to the importance of small-scale effects in the
prediction of the overall mechanical behaviour of these
materials, these help in designing and manufacturing of
modern day advanced materials.

Various problems based on the Eringen’s theory of
microstretch elasticity are studied by many authors. For
example, Iesan and Pompei (1995) presented a solution
of Boussinesq Somigliana Galerkin type for the boundary
value problem in static theory of microstretch elasticity
and established existence and uniqueness results.
Ciarletta (1999) investigated the isothermal bending of
microstretch elastic plates. Kumar et al. (2003) studied
plane strain problem in a microstretch solid. Marin (2010)
presented a domian of influence theorem in microstretch
materials. Kiris and Inan (2008) estimated microstretch
elastic moduli of materials by using vibration data of
plates. Various problems on plane and surface waves in
isotropic microstretch elastic materials are studied by
many authors. For instance, Nowinski (1993) particular-
ized the general field equations governing the propagation
of a nonlocal surface wave and examined the propagation
of a microrotation and microstretch wave in a nonlocal
medium. Singh (2002) studied the the plane waves in an
isotropic microstretch elastic solid and discussed a prob-
lem on reflection of the plane waves from free surface
to obtain the reflection coefficients and energy ratios of
reflected waves. Kumar et al. (2004) discussed a problem
on the Rayleigh waves in an isotropic microstretch ther-
moelastic diffusion solid half space. Sharma et al. (2007,
2009) considered the problems on propagation of Rayleigh
surface waves in an isotropic microstretch continua with
effects of micropolarity and relaxation times. Sharma et al.
(2014) studied the plane waves in an isotropic electro-
microstretch elastic solid. Othman and Jahangir (2015)
studied the effects of rotation and temperature depen-
dent elastic properties on the speed of plane waves in
an isotropic microstretch medium. Singh et al. (2016)
considered the reflection and transmission of dilatational
waves at a microstretch solid/fluid interface.
Metallic components (like single crystals or polycrys-

talline components) with dominant orientation in crystals
in the microstructure material exhibit highly anisotropic
properties. Seismic anisotropy provides important infor-
mation regarding structure of the sedimentary rocks and
helps in better understanding of the earth. Wave propa-
gation in anisotropic solids has three important features
(a) wave velocity variation with direction of propaga-
tion (b) three-dimensional displacement of the particle
and (c) energy propagation deviated both in velocity
and direction from phase propagation. In each propa-
gation direction, the bulk waves propagate in isotropic
materials with equal velocity at each angle of propaga-
tion. But in anisotropic materials, elastic waves propagate
with a velocity which depends on direction. There are
various studies on modelling of elastic waves in trans-
versely isotropic composites. For example, Rytov (1956),
Abubakar (1962), Keck and Armenkas (1971), Daley and
Hron (1977), Payton (1992), Kushwaha et al. (1993),
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Suvalov et al. (2005), Rudykh and deBotton (2012),
Rudykh and Boyce (2014) and Galich et al. (2016, 2017).
Some problems on wave propagation in transversely
isotropic micropolar medium have been investigated by
various authors. For example, Gupta and Kumar (2009),
Kumar and Gupta (2010a, 2010b, 2012) and Abbas and
Kumar (2014). In these problems, numerical values of
speeds and reflection coefficients are computed with the
help of an arbitrarily chosen data.
The problems on waves and vibration in transversely

isotropic elasticity of microstretch material are not stud-
ied much in literature. For an instance, Singh et al.
(2015) derived the governing equations for transversely
isotropic microstretch elastic solid and solved a problem
on Rayleigh wave propagation along the half-space of the
material. Plane wave propagation in transversely isotropic
microstretch elastic solid is not reported in literature yet.
This paper considers the plane wave propagation in a
transversely isotropic microstretch elastic medium. The
basic equations of motion for a transversely isotropic
microstretch elastic solid are formulated and solved for
plane wave solutions. A bi-quadratic velocity equation
for possible plane waves in the medium is obtained. A
non-homogeneous system of four equations in reflection
coefficients (or amplitude ratios) are obtained for incident
CLD wave. The speeds of plane waves and reflection coef-
ficients are computed and plotted to observe the effects of
microstretch parameters.

Governing equations
Following Eringen (1971, 1990, 1999, 2004), the basic
equations of linear theory of microstretch elasticity are:

tji,j = ρüi, (1)

mik,i + εijktij = ρjφ̈k , (2)

πk,k − σ = j0�̈ (3)

tij = Aijrsers + Bijrsκrs + Dij� + Fijkζk (4)

mij = Brsijers + Cijrsκrs + Eij� + Gijkζk (5)

σ = Dijeij + Eijκij + ζ� + hkζk (6)

πk = Fijkeij + Gijkκij + hk� + A∗
kjζj (7)

eij = uj,i + εjikφk , κij = φj,i, ζj = �,j (8)

Here, tij is the force stress tensor, mij is the
couple stress tensor, ρ is the density, ui are the
components of the displacement vector, εijk is the alter-
nating tensor, φi are the components of the micro-
rotation vector, πk is the microstretch function, �

is the microstress function, σ is the microinertia, j
is the micro-inertia, j0 is the microstretch inertia,

eij, κij and ζk are the kinematic strain measures and
Aijrs,Bijrs,Cijrs,Dij,Eij, Fijk ,Gijk , hi,Aij, κij are constitutive
coefficients. Latin subscripts range over the integers
(1, 2, 3). Subscripts preceded by a comma denote par-
tial differentiation with respect to the corresponding
Cartesian coordinates. Superposed dot denotes partial
differentiation with respect to the time t. The constitutive
coefficients and the microinertia tensor are assumed to
satisfy the following symmetry relations

Aijrs = Arsij, Bijrs = Brsij, Cijrs = Crsij,
Aij = Aji, κij = κji (9)

Method
We consider a homogeneous transversely isotropic
microstretch solid half space. We take the origin of the
coordinates system on the free surface and negative z axis
is pointing normally into the half-space, which is thus
represented by z ≤ 0. We assume that the medium is
transversely isotropic in such a way that the planes of
isotropy are perpendicular to z-axis. If we restrict our
study to plane strain parallel to x − z plane with displace-
ment and microrotation vector of the form u = (u1, 0,u3)
and φ = (0,φ2, 0). With the help of Eqs. (4) to (9), the
Eqs. (1) to (3) are specialized in x − z plane as

A11
∂2u1
∂x2

+ (A13 + A56)
∂2u3
∂x∂z

+ A55
∂2u1
∂z2

+ K1
∂φ2
∂z

+ D11
∂�

∂x
= ρ

∂2u1
∂t2

(10)

A66
∂2u3
∂x2

+ (A13 + A56)
∂2u1
∂x∂z

+ A33
∂2u3
∂z2

+ K2
∂φ2
∂x

+ D33
∂�

∂z
= ρ

∂2u3
∂t2

(11)

B77
∂2φ2
∂x2

+ B66
∂2φ2
∂z2

− K1
∂u1
∂z

− K2
∂u3
∂x

− χφ2 = ρj
∂2φ2
∂t2

(12)

A∗
11

∂2�

∂x2
+ A∗

33
∂2�

∂z2
− ξ� − D11

∂u1
∂x

− D33
∂u3
∂z

= j0
∂2�

∂t2
(13)

where A11 = A1111,A55 = A3131, A13 = A1133 = A3311,
A56 = A3113 = A1331, A66 = A1313, A33 = A3333, K1 =
A56−A55 = A3113−A3131,K2 = A66−A56 = A1313−A1331,
B77 = C1212, B66 = C3232, χ = K2 − K1.
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Plane wave solution
We seek the plane wave solutions of Eqs. (10) to (13) in the
following form

{u1,u3,φ2,�} = {A,B,C,D} exp {ik(x sin θ + z cos θ − vt)}
(14)

where θ is angle of propagation direction with vertical
axis, k is wave number, v is the speed of wave and ω = kv
is angular frequency.
Making use of Eq. (14) in Eqs. (10) to (13), we obtain

four homogeneous equations in A,B,C andD, which have
non-trivial solution if

�4 − A∗�3 + B∗�2 − C∗� + D∗ = 0 (15)

Here � = ρv2, A∗ = D1 + D2 + D∗
3 + D∗

4, B∗ = D1D2 +
D1D∗

3 + D1D∗
4 + D2D∗

3 + D2D∗
4 + D∗

3D∗
4 − K1K∗

1 cos2 θ −
K2K∗

2 sin2 θ − D11D∗
11 sin2 θ − D33D∗

33 cos2 θ − L2, C∗ =
D1D2D∗

3 + D1D2D∗
4 + D1D∗

3D∗
4 + D2D∗

3D∗
4 − (K2K∗

2D1 +
D11D∗

11D2 +D11D∗
11D∗

3 + K2K∗
2D∗

4) sin2 θ − (D33D∗
33D1 +

K1K∗
1D2 + D33D∗

33D∗
3 + K1K∗

1D∗
4) cos2 θ + L(D∗

11D33 +
D11D∗

33 + K∗
1K2 + K1K∗

2 ) sin θ cos θ − L2(D∗
3 + D∗

4),
D∗ = D1D2D∗

3D∗
4 + L(K∗

1K2D∗
4 + K1K∗

2D∗
4 +

D∗
11D33D∗

3 + D11D∗
33D∗

3) sin θ cos θ − (D1D∗
3D33D∗

33 +
K1K∗

1D2D∗
4) cos2 θ − (D2D∗

3D11D∗
11 +K2K∗

2D1D∗
4) sin2 θ −

(K1K∗
2D∗

11D33 + K∗
1K2D11D∗

33) cos2 θ sin2 θ +
K1K∗

1D33D∗
33 cos4 θ+K2K∗

2D11D∗
11 sin4 θ−L2D∗

3D∗
4, where

D1 = A11 sin2 θ+A55 cos2 θ , D2 = A33 cos2 θ+A66 sin2 θ ,
D3 = B66 cos2 θ+B77 sin2 θ , D4 = A∗

11 sin2 θ+A∗
33 cos2 θ ,

L = (A13 + A56) sin θ cos θD∗
11 = D11

j̄0
, D∗

33 = D33
j̄0
, D∗

4 =
D4
j̄0

+ ξ

j̄0k2
, K∗

1 = K1
jk2 , K

∗
2 = K2

jk2 , D∗
3 = χ

jk2 + D3
j , j̄0 = j0

ρ
.

The four roots of bi-quadratic velocity Eq. (15) cor-
respond to the speeds of propagation of coupled longi-
tudinal displacement (CLD) wave, coupled longitudinal
microstretch (CLM) wave, coupled transverse displace-
ment (CTD) wave and coupled transverse microrotational
(CTM) wave in the medium. The numerical solution
of Eq. (15) and reduced velocity equations in absence
of transverse anisotropy and microstretch shows that
vCLD > vCTD > vCLM > vCTM.

Reflection from a stress-free surface
For an incident coupled longitudinal displacement (CLD)
wave at stress free surface z = 0, there will be four reflected
waves as shown in Fig. 1. The mechanical boundary
condition at z = 0 are vanishing of the normal compo-
nent of force stress, the tangential component of force
stress, the tangential component of couple stress and the
microstretch function, i.e.,

t33 = 0, t31 = 0, m32 = 0, π3 = 0. (16)

where t33 = A13u1,1 + A33u3,3 + D33�, t31 = A56u3,1 +
A55u1,3 + K1φ2, m32 = B66φ2,3, π3 = h3� + A∗

31�,1 +
A∗
33�,3.

The appropriate displacement components u1,u3,
microrotation component φ2 and microstress function �

are taken as

u1 = A0 exp {ik1 (x sin θ0 + z cos θ0 − v1t)}

+
4∑

j=1
Aj exp

{
ikj

(
x sin θj − z cos θj − vjt

)}
, (17)

u3 = p1A0 exp {ik1 (x sin θ0 + z cos θ0 − v1t)}

+
4∑

j=1
pjAj exp

{
ikj

(
x sin θj − z cos θj − vjt

)}
, (18)

φ2 = q1A0 exp {ik1 (x sin θ0 + z cos θ0 − v1t)}

+
4∑

j=1
qjAj exp

{
ikj

(
x sin θj − z cos θj − vjt

)}
, (19)

� = r1A0 exp {ik1 (x sin θ0 + z cos θ0 − v1t)}

+
4∑

j=1
rjAj exp

{
ikj

(
x sin θj − z cos θj − vjt

)}
. (20)

where vi(i = 1, 2, ., 4) are real speeds of CLD, CTD,
CLM and CTM waves, respectively and the expressions
for pl, ql and rl (l = 1, 2, ., 4) are given in Appendix.
These displacement components, microrotation com-

ponent and microstress function satisfy boundary condi-
tions (16) if following Snell’s laws hold

k1 sin θ0 = k1 sin θ1 = k2 sin θ2 = k3 sin θ3 = k4 sin θ4,
(21)

k1v1 = k2v2 = k3v3 = k4v4 (22)

and a non-homogeneous system of four equations in
reflection coefficients is obtained as

4∑

j=1
aijZj = bi, (i = 1, 2, ., 4) (23)

where Zj = Aj
A0
, (j = 1, 2, ., 4) are amplitude ratios of

reflected CLD, CTD, CTM and CLM waves, respectively,
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Fig. 1 Geometry showing various reflected waves for incidence of coupled longitudinal displacement (CLD) wave

and

a1j =
iA13 sin θ0 − ipjA33

v1
vj

√
1 − sin2 θ0

(
vj
v1

)2 + D33
rj
k1

iA13 sin θ0 + ip1A33 cos θ0 + D33
r1
k1

,

(j = 1, 2, ., 4),

a2j =
ipjA56 sin θ0 − iA55

v1
vj

√
1 − sin2 θ0

(
vj
v1

)2 + K1
qj
k1

ip1A56 sin θ0 + iA55 cos θ0 + K1
q1
k1

,

(j = 1, 2, ., 4),

a3j =
qj v1vj

√
1 − sin2 θ0

(
vj
v1

)2

q1 cos θ0
, (j = 1, 2, ., 4),

a4j =
irjA∗

31 sin θ0 − irjA∗
33

v1
vj

√
1 − sin2 θ0

(
vj
v1

)2 + h3
rj
k1

ir1A∗
31 sin θ0 + ir1A∗

33 cos θ0 + h3 r1
k1

,

(j = 1, 2, ., 4),
b1 = −1, b2 = −1, b3 = 1, b4 = −1.

The above theoretical analysis reduces for transversely
isotropic micropolar elastic case, when D11 = 0 and
D33 = 0. The above analysis also reduces for transversely
isotropic elastic case, when D11 = 0, D33 = 0, K1 = 0
and K2 = 0.

Results and discussion
To the best of authors knowledge, the micromechanics
based data for transversely isotropic micropolar and
microstretch materials is not available in literature.
Recent studies on wave propagation in transversely

isotropic micropolar or microstretch media have consid-
ered theoretical values of elastic moduli (for example,
Gupta and Kumar 2009; Kumar and Gupta (2010a);
Kumar and Gupta (2010b); Kumar and Gupta (2012)
and Abbas and Kumar 2014). It is reasonable to con-
nect the present theoretical study to polymers, graphite,
asphalt, human bones, composite material with reinforced
chopped elastic fibres and porous media saturated with
gas or inviscid liquid. But so for no experiment with a
microstretch interpretation to determine the elastic con-
stants are known on these physical materials. In present
study, the relevant values of physical constants (satisfying
the inequalities among these constants) of a transversely
isotropic composite material modelled as microstretch
medium are taken to compute the wave speeds of plane
waves and the reflection coefficients of reflected waves.

A11 = 17.8 × 1011Nm−2, A33 = 18.43 × 1011Nm−2,
A13 = 7.59 × 1011Nm−2,
A56 = 1.89 × 1011Nm−2, A55 = 4.357 × 1011Nm−2,
A66 = 4.42 × 1011Nm−2,
A65 = 4.32 × 1011Nm−2, B77 = 0.278 × 1010N ,
B66 = 0.268 × 1010N ,
A∗
11 = 0.03 × 1011Nm−2, A∗

33 = 0.04 × 1011Nm−2,
D11 = 0.062 × 1010N ,
D33 = 0.063 × 1010N , ρ = 1.74 × 103Kg m−3,
j = 0.196m2.

For these theoretical values of physical constants, the
bi-quadratic Eq. (15) is solved numerically for phase
speeds of plane waves by using Fortran program of Fer-
rari’s method. For above physical constants, the non-
homogeneous system (23) of four equations is also solved
numerically to compute the values of amplitude ratios
of various reflected waves by using Fortran program of
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Gauss elimination method. To check correct implemen-
tation of code, the variations of computed phase speeds
and amplitude ratios are verified with earlier established
results in absence of transverse isotropy and microstretch
(Ewing et al. 1957; Achenbach 2003; Singh 2002).
The speeds of plane waves are computed and plotted

for range 0o ≤ θ ≤ 90o of propagation direction in
Figs. 2, 3, 4 and 5. The values of speeds shown on y-axis
in these figures are without multiplier ×104. For trans-
versely isotropic microstretch and transversely isotropic
micropolar cases, the variations of speeds of coupled lon-
gitudinal displacement (CLD) wave are shown graphically
in Fig. 2 by solid and dotted curves, respectively. For trans-
versely isotropicmicrostretch case (solid curve), the speed
of CLDwave varies between 3.055×104 m.s−1 and 3.275×
104 m.s−1. Maximum speed of CLD wave is observed for
angle of propagation θ = 0o. The speed of CLD wave
decreases to its minimum value 3.055 × 104 m.s−1 at
angle of propagation θ = 45o. Thereafter, it increases and
attains a value 3.218 × 104 m.s−1 at propagation angle
θ = 90o. This change in values of speed of CLD wave with
the angle of propagation is due to the presence of trans-
verse isotropy in the medium. This velocity anisotropy
of CLD wave is quite significant at angle of propaga-
tion θ = 45o. Comparing solid and dotted variations in
Fig. 2, it is observed that the values of speed of CLD
wave increase at each angle of propagation in presence of
microstretch. However, this increase is not equal at each
angle of propagation. In absence of transverse isotropy,
the speed of CLD wave in both cases becomes equal at
each angle of propagation and the increase in speed due
to microstretch is also equal at each angle of propaga-
tion. This significant difference between microstretch and

Fig. 2 Variations of the speeds of coupled longitudinal displacement
(CLD) wave against the angle of propagation. The values of speed on
vertical axis are shown with multiplier ×104

Fig. 3 Variations of the speeds of coupled transverse displacement
(CTD) wave against the angle of propagation. The values of speed on
vertical axis are shown with multiplier ×104

non-microstretch cases is observed due to the strong cou-
pling between longitudinal displacement and longitudinal
microstretch fields.
For transversely isotropic microstretch and transversely

isotropic micropolar cases, the speeds of coupled trans-
verse displacement (CTD) wave are plotted against the
angle of propagation in Fig. 3 by solid and dotted curves,
respectively. For transversely isotropic microstretch case,
the speed of CTD wave is 1.583 × 104 m.s−1 at propa-
gation angle θ = 0o. It increases to its maximum value

Fig. 4 Variations of the speeds of coupled transverse microrotational
(CTM) wave against the angle of propagation. The values of speed on
vertical axis are shown with multiplier ×104



Singh and GoyalMechanics of AdvancedMaterials andModern Processes  (2017) 3:8 Page 7 of 10

Fig. 5 Variations of the speeds of coupled longitudinal microstretch
(CLM) wave against the angle of propagation. The values of speed on
vertical axis are shown with multiplier ×104

1.934 × 104 m.s−1 at angle of propagation θ = 46o.
Thereafter, it decreases to a value 1.594 × 104 m.s−1 at
propagation angle θ = 90o. This significant change in
speed of CTD wave in range 0o ≤ θ ≤ 90o is due to
the presence of transverse isotropy in medium. Compar-
ing solid and dotted variations in Fig. 3, it is observed
that there is a little effect on the speed of CTD wave
due to the presence of microstretch. This small differ-
ence in values of speed of CTD wave in two cases is
due to weak coupling between transverse displacement
and longitudinal microstretch fields. For isotropic cases
of microstretch and non-microstretch, the speed of CTD
wave is independent of direction of propagation.
Figure 4 shows the variation of speeds of coupled trans-

verse microrotational (CTM) wave against the angle of
propagation for microstretch and non-microstretch cases.
The speed of CTM wave is 0.284 × 104 m.s−1 at propa-
gation angle θ = 0o. Due to the presence of transverse
isotropy in medium, the speed of CTM wave increases
with the increase in angle of propagation and attains a
maximum value 0.289 × 104 m.s−1 at θ = 90o to vertical
axis. Due to weak coupling between transverse microrota-
tion and longitudinal microstretch, there is no significant
difference in values of speeds at each angle of propagation
in both cases.
The dependence of speed of coupled longitudinal

microstretch (CLM) wave on propagation angle θ is
shown graphically in Fig. 5. The speed of CLM wave is
1.382 × 104 m.s−1 at θ = 0o. and it decreases slowly with
the increase in angle of propagation and attains to a max-
imum value 1.186 × 104 m.s−1 at θ = 90o. This change in

speed at each angle of propagation is due to the pres-
ence of transverse isotropy in the medium. In transversely
isotropic micropolar elastic case, there exists three plane
waves, namely, CLD, CTD and CTM waves. In trans-
versely isotropic microstretch elastic medium, CLM is
a new wave in addition to CLD, CTD and CTM waves
due to coupling between displacement components u1,u3,
microrotation component φ2 andmicrostetch potential�.
The amplitude ratios of reflected CLD, CTD, CTM and

CLM waves are computed and plotted for range 0o ≤
θ0 ≤ 90o of angle of incidence in Figs. 6, 7, 8 and 9.
For transversely isotropic microstretch case, the ampli-
tude ratio of reflected CLD wave is obtained as 1.02 at
angle of incidence θ0 = 1o (near normal incidence).
It decreases sharply with the increase in angle of inci-
dence and attains to a minimum value 0.021 at θ0 = 57o.
Thereafter, it increases sharply to value one at θ0 = 90o
(grazing incidence). This solid variation of amplitude ratio
of CLD wave is shown in Fig. 6. The amplitude ratio of
reflected CTD wave is obtained as 0.207 at θ0 = 1o. It
decreases sharply to a value 0.0038 at θ0 = 45o. There-
after, it increases and attains its maximum value 0.2475 at
θ0 = 71o and then decreases to zero at θ0 = 90o (graz-
ing incidence). This solid variation of CTD wave is shown
in Fig. 7. The amplitude ratio of reflected CTM wave is
0.000984 at θ0 = 1o. It decreases to a value 0.000018
at θ0 = 45o. Thereafter, it increases and attains a value
0.0007 at θ0 = 65o and then decreases to zero at θ0 = 90o.
This solid variation of the amplitude ratios of reflected
CTM wave is shown graphically in Fig. 8. The amplitude
ratio of reflected CLM wave is 0.3536 at θ0 = 1o. It

Fig. 6 Variations of the amplitude ratios of reflected coupled
longitudinal displacement (CLD) wave against the angle of incidence
of CLD wave
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Fig. 7 Variations of the amplitude ratios of reflected coupled
transverse displacement (CTD) wave against the angle of incidence of
CLD wave

increases slightly to a value 0.3574 at θ0 = 6o and then
decreases to a value 0.0043 at θ0 = 46o. Thereafter, it
increases and attains a value 0.084 at θ0 = 59o and then
decreases to zero at grazing incidence θ0 = 90o. These
changes in amplitude ratios of CLD, CTD, CTM and CLM
waves are due to the dependence of solutions (amplitude
ratios) of homogeneous system (23) on angle of incidence
θ0 and other material parameters. The energy share of
reflected CLD, CTD, CTM and CLM waves change at
each angle of incidence of incident CLD wave. The dot-

Fig. 8 Variations of the amplitude ratios of reflected coupled
transverse microrotational (CTM) wave against the angle of incidence
of CLD wave. The solid and dotted variations are plotted after
multiplying the original values of amplitude ratios by 100

Fig. 9 Variations of the amplitude ratios of reflected coupled
longitudinal microstretch (CLM) wave against the angle of incidence
of CLD wave

ted variations in Figs. 6 to 9 correspond to transversely
isotropic micropolar case. The comparison of solid and
dotted curves in these figures show the effect of the pres-
ence of microstretch on reflected waves. The extent of this
effect depends of coupling between displacement, micro-
rotation and microstretch fields. For example, the dotted
curve in Fig. 9 is absent as there is no microstretch field in
transversely isotropic micropolar elastic case.

Conclusions
From theory and numerical discussion, the following
observations are made:

(1) In x-z plane of a transversely isotropic microstretch
elastic medium, four plane waves (CLD, CTD, CLM
and CTM waves) propagate with distinct speeds. For
a specific material, numerical simulation in presence
as well as in absence of microstretch shows that the
coupled longitudinal displacement (CLD) wave is
fastest wave and the coupled transverse
microrotational (CTM) is observed slowest wave.
The coupled longitudinal microstretch (CLM) wave
is an additional wave due to the presence of
microstretch in the medium. For present numerical
example, the order in speeds of various plane waves
is obtained as (vCLD > vCTD > vCLM > vCTM).

(2) The presence of microstretch in transversely
isotropic micropolar elastic solid affects the speeds of
plane waves. The coupled transverse displacement
(CTD) and coupled transverse microrotational
(CTM) waves are least affected due to weak coupling
between transverse displacement, transverse
microrotation and microstretch fields.
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(3) Due to the presence of transverse anisotropy in the
medium, the speeds of various plane waves depend
on angle of propagation direction with vertical axis.

(4) For incident CLD wave, a non-homogeneous system
of four equations in amplitude ratios of various
reflected waves is obtained. This system is solved to
find amplitude ratios of reflected waves for
theoretical values of material parameters.

(5) The amplitude ratios of various reflected waves
depend on angle of incidence of incident CLD wave
and material parameters. The energy share of each
reflected wave changes at each angle of incidence.

(6) The presence of microstretch in transversely
isotropic micropolar elastic solid affects the
amplitude ratios of all reflected waves due to
coupling of microstretch fields with displacement
and microrotation fields.

The present information though theoretical but may be
useful in some possible experiment based problems on
wave propagation in a transversely isotropic microstretch
elastic medium.

Appendix
The expressions for pj,

qj
kj and

rj
kj

(j = 1, 2, ., 4) are given as

pj = Aj+Bj
Mj+Nj

, qjkj = −i(Cj+Dj)
Mj+Nj

, rj
kj = −i(Ej+Fj)

Mj+Nj
,

where

Aj = K1K∗
1jD33

[
1 − sin2 θ0

( vj
v1

)2
]( 3

2
)
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1jK2D11 sin2 θ0
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v1

)2
√

1 − sin2 θ0

( vj
v1

)2
,
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v1

)
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√
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( vj
v1

)2
,
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) [
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v1
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