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Abstract

Background: There has been little discussion of the third-order elastic constants of steels in the literature until now.
In this study, the precise second- and third-order elastic constants of polycrystalline steels were measured under
adiabatic and isothermal conditions.

Method: Tomeasure theminute change in the propagation time of the elastic wave corresponding to the tensile
stress, the uniform and isotropic specimens were processed with high precision, the measuring instruments were
strictly calibrated, and the temperature of the measurement chamber was kept constant. The author proposes an
experimental formula to obtain the third-order elastic constants of steels. The stress dependent coefficients αij
in this formula are absolutely necessary to obtain the third-order elastic constants.

Results: The obtained stress dependent coefficients clearly indicated that there is a special relationship between the
directions of stress and that of the oscillation of the elastic wave. When the frequency direction of the elastic wave
matched the direction of the applied stress, αij became a larger negative value. Lamè constants and Murnaghan’s
third-order elastic constants �,m, n were obtained for four types of steels.

Conclusions: The second- and third-order elastic constants under adiabatic conditions were smaller than those
under isothermal conditions. Oscillation of crystal lattice is nonlinear and this is observed as the third-order elastic
constants. Therefore, it is possible to obtain the knowledge on the internal stress and the thermal properties of the
materials. This is also the basis of theoretical discussion of the thermal expansion coefficients.

Keywords: Second- and third-order elastic modulus, Elastic wave, Stress dependent coefficient, Polycrystalline
material

Introduction
The first study of the theory and measurement of the
third-order elastic constants of practical materials was
published byHughes and Kelly (1953). D.Lazarus reported
the third-order elastic constants of the single crystals like
KCl , Cu etc by measureing propagation velocity of elas-
tic wave under hydrostatic pressure (Lazarus 1949) and it
may useful in comparison of the theories of finite strain
proposed by Murnagham (1951). R.N.Thurston published
a paper on the theoretical analysis of the propagation of
elastic wave (Thurston and Brugger 1964). D.M. Egle et al.
carried out the measurement of the third-order elastic
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constants for rail steel using Hughes’s result (Egle and
Bray 1976). S.Takahashi got the U.S.patent on the stress
measurement and its equipment according to the method
of the present paper (Takahashi 2007). T.Batemen et al.
reported that the third-order elastic constant of semicon-
ductor was related to thermal expansion coefficient and
Gűneisen constants (Bateman et al. 1961). As described
above, the knowledge on the third-order elastic constants
contributes to the study of physical properties of various
materials.
This paper describes the measurement of the third-

order elastic constants of four common steels. The stress
applied to the specimen was increased stepwise, and the
velocity of the elastic wave was measured at every step
using a high accuracy measuring technique. The shape
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and dimensions of the specimen were controlled as pre-
cisely as possible and the measuring equipment was also
accurately calibrated. The change in room temperature
was kept to 1°C or less during the measurement. Second-
and third-order elastic constants contribute to the change
in the propagation velocity of the elastic wave caused
by stress (Hughes and Kelly 1953; Takahashi and Motegi
2015).
The author proposed a simple equation of the propaga-

tion velocity under stress by introducing the coefficient αij
including the second- and third-order elastic constants.
The value of αij can be obtained from the measured stress
and the change ratio in propagation velocity. The coeffi-
cients αij is absolutely necessary to obtain the third-order
elastic constants. When the frequency direction of the
elastic wave matched the direction of the applied stress,
the value of αij becamemore negative. This means that the
coincidence of the frequency direction with the applied
stress greatly contributed to the propagation velocity of
the wave. The value of αij is based on the stress-strain rela-
tion. Therefore it is necessary to obtain the vales of αij on
this relationship.

Experimental method
Test specimen
Figure 1 shows the dimensions and coordinates of the test
specimens. The specimens were designed to be attached
to the tensile testing machine and make it easy to mea-
sure their elastic waves. Coordinates numbered 1, 2, and
3 were used instead of x, y, and z. The long axis direc-
tion of the specimen was denoted 1, and the directions
perpendicular to it were denoted 2 and 3. The propa-
gation velocity of the longitudinal wave in direction 1
was expressed as V11, while that of the transvers wave to
direction 1 and vibration in direction 2 was expressed as
V12. For the propagation velocity V, the same subscripts

express the longitudinal wave, while different subscripts
express the transverse wave. T11 represents the tensile
stress in the direction of the long axis of the specimen.
Table 1 lists the chemical compositions of the S20C(AISI
1020), S30C(AISI 1030), S40C(AISI 1039) and S50C(AISI
1049) test specimens.

Stress dependent coefficients of elastic wave αij

The propagation velocity Vij of the elastic wave in the
specimen under an applied stress of T11 is expressed as

Vij = V0

(
1 + αij

T11
E

)
(1)

where V0 is the propagation velocity of the elastic wave
under non-loaded state, αij is the stress dependent coef-
ficient of the elastic wave, and E is Young’s modulus. The
expression of Vij by Hughes and Kelly (1953) and the
authors Takahashi and Motegi (2015) is

ρ0V 2
11 = λ+2μ+T11

E
[5λ + 10μ + 2� + 4m − 2ν(λ + 2�)]

(2)

where λ, μ are Lamè constants, �,m, n are the
Murnaghan’s third order elastic constants, ν is Poisson’s
ratio and ρ0 is the density in the non-deformed state. The
formula (1) is based on an equation previously introduced
by the authors Takahashi and Motegi (2015) and it can be
rewritten as

V 2
11 = V 2

0

(
1 + α11

T11
E

)2
≈ V 2

0

(
1 + 2α11

T11
E

)

V 2
0 = λ + 2μ

ρ0

(3)

From the relations described above, α11 is given as follows,

α11 = 1
2(λ + 2μ)

[ 5λ + 10μ + 2� + 4m − 2ν(λ + 2�)]

Fig. 1 Schematic diagram of specimen L and T : longitudinal and transvers transducers
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Table 1 Chemical composition of S20C to S50C specimens(wt%)

Sample C Si Mn Ni+Cr

S20C 0.22 0.29 0.52

S30C 0.32 0.31 0.81

S40C 0.40 0.28 0.78 0.12

S50C 0.49 0.31 0.83 0.12

In the same way, the formulae of other α22, α21, α12 and
α23 can be obtained.
For example,

α22 = 1
2(λ + 2μ)

[ λ+2�−ν(6λ+10μ+4�+4m)] (4)

The coefficient αij is used to obtain Murnaghan’s third-
order elastic constants �,m, n as follows.

� = (2α11 − 5)(λ + 2μ)

2(1 − 2ν)
− 2m − νλ

1 − 2ν

m =
[

α11 − α22
2(1 + ν)

− 1
]

(λ + 2μ) − μ

2

n12 = 2
ν
[−(a + 4ν) + 2ν(a + μ) + 2μα12]

n21 = 2
ν
[−(a + 2μ) + 2ν(a + 2μ) + 2μα21]

n23 = 2[ a − 2ν(a + 3μ) − 2μα23]

(5)

here a=λ + m

Measurement of the propagation velocity of elastic wave
in the applied stress direction
The stress in the gripping regions is complicated and
should be eliminated, so two kinds of specimens with
identical grip sizes but different gauge length were pre-
pared. Hereafter the symbol a denotes the long specimen
while b denotes the short specimen. The propagation
times under stress free are written as

t0a = La/V0, t0b = Lb/V0,

where La, Lb are the total length of the specimens under
stress free conditions, and ta, tb are the propagatioon time
under applied stress.
The differences in propagation time are written as

�ta = ta − t0a and �tb = tb − t0b.
The propagation time in the applied stress direction is

obtained from formula (1) as follows,

t = Lg
Vg

+
Lm

(
1 + T11

E

)

V0
(
1 + α11

T11
E

) (6)

where Lm is the length of the gauge part in the non-loaded
state, Lg is the grip length under the applied stress, Vg
is the average velocity of the wave passing through grip
part. In the case of a longitudinal wave propagating in the

applied stress direction of the long specimen, �ta/t0a can
be written using an approximate calculation as

�ta
t0a

=
(
Lg
Vg

− Lm
V0

)
La
V0

+ Lma
La

(1 − α11)
T11
E

(7)

�ta/t0a and �tb/t0b can be obtained by measuring the
time of the propagating elastic wave.
In a similar manner, for the short specimen,

�tb
t0b

=
(
Lg
Vg

− Lm
V0

)
Lb
V0

+ Lmb
Lb

(1 − α11)
T11
E

(8)

The grip and the gauge parts are expressed separately
in the above formulae. Using above two formulae, α11 is
given as

α11 = 1 − E
T11

[
La
�L

·
(

�ta
t0a

)
− Lb

�L
·
(

�tb
t0b

)]

�L = La − Lb = 50
(9)

The transvers wave of α12 is also obtained from applying
the measured �ta/t0a and �tb/t0b data to the formula (9).

Measurement of propagation velocity of elastic wave in
direction orthogonal to the tensile stress axis
The propagation time of the elastic wave t measured at the
side of the specimen is defined by the following,

t =
W

(
1 − νT11

E

)

V0
(
1 + αijT11

E

) (10)

where W is width of the non-loaded specimen, and ν is
Poisson’s ratio. From the approximate calculation of for-
mula(10), the coefficient related to the elastic wave in the
direction of 2j is given as

α2j = −ν − E
T11

(
�t
t0

)
(11)

The coefficient α22 for longitudinal waves and α21, α23 for
transverse waves can be obtained from formula (11) using
the respective value of

(
�t
t0

)
from the measurements of

S20C to S50C specimens.

Measurement equipment
An Instron type tensile testing machine and a comput-
erized strain measurement apparatus were used in this
work. The load cell was compensated using the stan-
dard gauge. The strain of the specimen was measured by
strain gauge adhered on both sides of the gauge region
as shown in Fig. 1. Measurement of the propagation time
of the elastic wave was performed with a device having
a time resolution of 10ns as shown in Fig. 2 (Takahashi
and Motegi 1987). The grip holder of the tensile test-
ing machine was designed and manufactured to pull the
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Fig. 2 Schematic diagram of the measurement system

leading wire of transducer from the both ends of the speci-
men (Takahashi and Takahashi 2007). PZT type(2-5MHz)
piezoelectric resonators, plates of 10 × 10mm2 in size,
were used as transducers for the longitudinal and tansvers
waves.

Results
The stress applied to the specimen was increased in steps
of 5.4MPa. The stress, strain, Poisson’s ratio, propagation
time of longitudinal and transvers waves were measured
after each increase. Figure 3 shows the stress-strain curve
for S30C sample. Figure 4 shows the relationship between
the ratio of change in the propagation time with stress
for S30C, obtained by measuring the longitudinal and
transvers waves propagating parallel and perpendicular to
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Fig. 3 Stress vs strain for S30C specimen

the stress axis. The coefficient αij was obtained by mea-
surering the gradient of the stress vs change ratio of the
propagation time curve shown in Fig. 4 to formula (9) and
(11) for long and short specimens.
The values of Lamè constant, Young’s modulus, Pois-

son’s ratio, third-order elastic constants and αij obtained
by the stress-strain curve of tencile testing machine were
set as values under isothermal conditions. On the other
hand, these obtained from the measured values of the
propagating time of the elastic wave were taken as val-
ues of adibatic conditions. The measured values of α11,
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α12, α21, α22 and α23 in the isothermal and adiabatic states
are shown in Table 2. These were different owing to the
different elastic constants measured by the tensile test or
from the adiabatic elastic wave. The second-order elastic
constants of the isothermal and adiabatic measurements
are shown in Table 2 alongside the third-order elastic
constants.
Figure 5 shows the stress dependent coefficients α11,

α12, α21, α22 and α23 of each specimen. It was clear that
α having coordinates 11 or 21 showed a larger nega-
tive value. It is considered that the agreement between
the stress and oscillation direction of the elastic wave
greatly displaced αij towards a more negative value.
The measured values of the third-order elastic con-
stants of each specimen in adiabatic state are shown in
Fig. 6.

Discussion
The main goal of this study was to accurately mea-
sure the change in the propagation time of elastic
waves in the material with stress and obtain a mathe-
matical formula connecting theory and experiments to
derive the third-order elastic constants. An empirical
formula consisting of the stress dependent coefficient
αij related with the third-order elastic constants was
obtained based on the mathematical formula derived
by Hughes and Kelly (1953) and the present author

Takahashi and Motegi (2015). Care was taken in prepar-
ing the specimens to precise dimensions, using well-
calibrated measument equipment, and maintaining good
temperature control during the measurement to obtain
precise αij data.
The basis of this experiment is to measure the value of

αij. The value of αij can be obtained from the gradient
of changing ratio of elastic wave propagation time to the
applied stress. Therefore from this viewpoint, αij should
be determined. When the direction of the stress matches
the direction of the vibration wave, αij has a larger nega-
tive value compared with in the other cases. It means the
decrease of propagation velocity of the elastic wave. Thus,
this coefficient αij also has a relationship to the propaga-
tion velocity of the elastic waves. Murnaghan’s third order
elastic constants could be calculated using the obtained
coefficients αij. As described above, of the obtained third-
order elastic constants, �, m and n were negative for all
specimens.
Table 2(B)(C) show the differences between isother-

mal and adiabatic elastic constants. The difference in the
third-order elastic constants are larger than the differ-
ence in the second-order ones. O.M.Krasinikov reported
no significant difference between isothermal and adiabatic
elastic constants (Krasilnikov 1977). However, there is a
relatively large difference between m and n in isothermal
state and adiabatic state.

Table 2 Coefficient αij and second- and third-order elastic constants in the isothermal and adiabatic states

(A) Stress dependent coefficients of αij

αij S20iso S20adi S30iso S30adi S40iso S40adi S50iso S50adi

α11 -1.484 -1.450 -1.620 -1.507 -1.823 -1.689 -1.887 -1.764

α22 0.232 0.227 0.161 0.143 0.164 0.159 0.194 0.173

α12 0.282 0.291 0.157 0.193 0.128 0.159 0.059 0.098

α21 -1.209 -1.197 -1.443 -1.393 -1.448 -1.393 -1.388 -1.342

α23 0.408 0.399 0.116 0.100 0.035 0.024 0.092 0.076

(B) Lamè constants and Young’s modulus(× 103MPa)

λ 115 114 98 94 113 110 132 126

μ 83 82 86 82 85 82 85 82

E 214 211 217 207 218 210 223 213

(C) Murnaghan’s third order elastic constants(× 103MPa)

� -940 -932 -797 -795 -916 -914 -1064 -1058

m -346 -335 -355 -318 -402 -362 -434 -390

n12 -1161 -1025 -1120 -1105 -1012 -1003 -1058 -1038

n21 -1192 -1187 -1420 -1373 -1331 -1297 -1233 -1189

n23 -619 -601 -553 -505 -550 -503 -580 -530

ρ 7.833 7.829 7.840 7.835

ν 0.291 0.290 0.267 0.267 0.286 0.287 0.304 0.304

ρ : density, ν : Poisson’s ratio



TakahashiMechanics of AdvancedMaterials andModern Processes  (2018) 4:2 Page 6 of 7

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

S
tr

es
s 

de
pe

nd
en

t c
oe

ffi
ci

en
ts

11 12 21 22 23
Fig. 5 Stress dependent coefficiets of α11 ∼ α23 for S20C to S50C
specimens in adiabatic state

Fig. 6 Third-order elastic constants in adiabatic state

Conclusions
1. An experimental methods for measuring third-order

elastic constants accurately and relatively easy was
described.

2. Measurements of the change ratio of propagation
time of the elastic wave with respect to the change in
the applied stress, stress-strain curves, were
performed for four types of practical steel specimens.

3. A formula relating the experimentally measured
values to theory was proposed. This formula
consisted of stress, Young’s modulus, the
propagation velocity of the elastic wave, stress
dependent coefficient αij, the values of all of which
were measurable.

4. The two types of speimens with identical grip sizes
but different gauge lengths were prepared to
eliminate the influence of the grip parts and to apply
uniform stress.

5. A formula for αij was proposed using data obtained
from long and short specimens.

6. αij was obtained from the gradient of the relationship
between the change ratio of the propagation time
and stress.

7. αij is not only a coefficient necessary to obtain the
third-order elastic constants but also provide other
information on the behavior of elastic wave
propagation. The values of α11 and α21 where the
frequency direction of the elastic wave matched the
stress axis, were negative and larger in magnitude
than those of the other coefficients. This meant a
deceleration of the propagation of the elastic wave.

8. The Murnaghan’s third-order elastic constants
�,m, n were obtained for the four types of practical
steels under isothermal and adiabatic conditions and
those were negative values.

9. The differences between the values of Lamè
constants λ, μ and the Young’s modulus E measured
under isothermal and adiabatic conditions were not
very large, but a relatively large difference was found
in the case of m and n in third-order modulus.

10. The present study of the third-order elastic constants
of materials will greatly contribute to understanding
internal stress, thermal properties, Grűneisen
constants and so on of steel, semiconductor and non
ferrous metals. The author got U.S.Patent on the
stress measurement and its equipment (Takahashi
2007).

Abbreviations
AISI: American iron and steel institute

Acknowledgements
Not applicable.

Funding
Not applicable.



TakahashiMechanics of AdvancedMaterials andModern Processes  (2018) 4:2 Page 7 of 7

Availability of data andmaterials
Data and materials are available.

Authors’ contributions
The author read and approved the final manuscript.

Authors’ information
ST is PhD.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Author agrees to publication.

Competing interests
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 6 August 2017 Accepted: 19 January 2018

References
Bateman T, Mason WP, McSkimin HJ (1961) Third-order elastic moduli of

Germanium. J Appl Phys 32(5):928–936
Egle DM, Bray DE (1976) Measurement of acoustoelastic and third-order elastic

constants for rail steel. J Acoust Soc Am 60(3):741–744
Hughes DS, Kelly JL (1953) Second order elastic deformation of solid. Phys Rev

92(5):1145–1149
Krasilnikov OM (1977) Temperature dependence of third-order elastic

constants. Sov Phgs State 19(5):764–768
Lazarus D (1949) The variation of the adiabatic elastic constants of KCl, NaCl,

CuZn, Cu and Al with pressure to 10,000 bars. Phys Rev 76(4):545–553
Murnagham FD (1951) Finite deformation of an elastic solid. Wiley, New York
Takahashi S (2007) Stress measurement method and its apparatus. U.S. Patent

No. 7299138, December 10
Takahashi, S, Motegi R (1987) Stress dependency on ultrasonic wave

propagation velocity. J Mater Sci 22:1857–1863
Takahashi S, Motegi R (2015) Measurement of third-order elastic constants and

applications to loaded structural materals. Springer Plus July 4:325
Takahashi S, Takahashi K (2007) Third order elastic constants of semi

continuous casting ingot A3004 aluminium alloy and measurement of
stress. J Mater Sci 42:2070–2075

Thurston RN, Brugger K (1964) Third-order elastic constants and the velocity of
small amplitude elastic waves in homogeneously stressed media. A Phys
Rev 133(6):A1604–A1612


	Abstract
	Background
	Method
	Results
	Conclusions
	Keywords

	Introduction
	Experimental method
	Test specimen
	Stress dependent coefficients of elastic wave ij
	Measurement of the propagation velocity of elastic wave in the applied stress direction
	Measurement of propagation velocity of elastic wave in direction orthogonal to the tensile stress axis
	Measurement equipment

	Results
	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Authors' information
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	References

